Estimating aboveground biomass of tropical urban forests with UAV-borne hyperspectral and LiDAR data

高光谱成像 激光雷达 天蓬 环境科学 胸径 牙冠(牙科) 生物量(生态学) 遥感 树冠 树(集合论) 林业 地理 生态学 数学 生物 医学 数学分析 牙科
作者
Matheus Pinheiro Ferreira,Gabriela Barbosa Martins,Thaís Moreira Hidalgo de Almeida,Rafael da Silva Ribeiro,Valdir Florêncio da Veiga,Igor Paz,Marinez Ferreira de Siqueira,Bruno Coutinho Kurtz
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:96: 128362-128362 被引量:19
标识
DOI:10.1016/j.ufug.2024.128362
摘要

Urban trees and forests can contribute to climate change mitigation by sequestering carbon in their living tissues, with aboveground biomass (AGB) playing a pivotal role. This study explores the capability of UAV-borne hyperspectral and LiDAR data for estimating AGB in tropical urban forests. Structural attributes of trees, such as diameter at breast height (DBH), total height, and wood density, were collected from over 5600 individuals, forming a comprehensive AGB dataset. Our methodology included two primary AGB estimation strategies: an area-based strategy that correlated AGB with hyperspectral and canopy height data across various grid sizes and an individual tree crown (ITC)-based method that integrated canopy height, spectral signatures of individual trees and crown area. The findings indicate that increasing the grid size from 10 m to 50 m improved the R2 from 0.24 ± 0.04 to 0.61 ± 0.13, mainly due to reduced border effects. Furthermore, integrating canopy height and hyperspectral data enhanced the R2 of AGB estimates from 0.61 ± 0.13 to 0.70 ± 0.09 for a 50 × 50 m grid. Crucially, wavelengths centered at the green peak and red-edge were identified as key bands in AGB retrieval. Integrating hyperspectral and LiDAR data did not significantly enhance results for individual trees, where AGB was closely linked to tree height and crown area. This study underscores the potential of utilizing integrated UAV-borne sensors for biomass assessment in urban forest settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciKid524完成签到 ,获得积分10
2秒前
2秒前
Berne发布了新的文献求助10
2秒前
3秒前
斯文败类应助xh采纳,获得10
3秒前
ljw完成签到 ,获得积分10
3秒前
SciGPT应助1212采纳,获得10
3秒前
清脆南霜完成签到,获得积分10
4秒前
4秒前
bunny发布了新的文献求助10
4秒前
Owen应助伶俐鹤轩采纳,获得20
5秒前
小二郎应助王蕊采纳,获得10
5秒前
5秒前
杨小鸿发布了新的文献求助10
6秒前
dddd发布了新的文献求助10
8秒前
Nara2021发布了新的文献求助10
10秒前
11秒前
183完成签到,获得积分10
12秒前
石头爱科研完成签到,获得积分10
12秒前
13秒前
科研通AI6.1应助bunny采纳,获得10
13秒前
若水完成签到,获得积分0
13秒前
14秒前
cherish完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助30
15秒前
鲨鱼游泳教练完成签到,获得积分10
17秒前
19秒前
20秒前
lsrlsr发布了新的文献求助10
20秒前
华仔应助傻傻的雅寒采纳,获得10
21秒前
王蕊发布了新的文献求助10
21秒前
伶俐鹤轩完成签到,获得积分10
22秒前
SciGPT应助杨小鸿采纳,获得10
23秒前
BIGDUCK发布了新的文献求助10
23秒前
王者归来完成签到,获得积分10
24秒前
伶俐鹤轩发布了新的文献求助20
25秒前
zhao完成签到,获得积分10
26秒前
超级手套完成签到,获得积分10
27秒前
Destiny完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978