Estimating aboveground biomass of tropical urban forests with UAV-borne hyperspectral and LiDAR data

高光谱成像 激光雷达 天蓬 环境科学 胸径 牙冠(牙科) 生物量(生态学) 遥感 树冠 树(集合论) 林业 地理 生态学 数学 生物 数学分析 医学 牙科
作者
Matheus Pinheiro Ferreira,Gabriela Barbosa Martins,Thaís Moreira Hidalgo de Almeida,Rafael da Silva Ribeiro,Valdir Florêncio da Veiga,Igor Paz,Marinez Ferreira de Siqueira,Bruno Coutinho Kurtz
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:96: 128362-128362 被引量:19
标识
DOI:10.1016/j.ufug.2024.128362
摘要

Urban trees and forests can contribute to climate change mitigation by sequestering carbon in their living tissues, with aboveground biomass (AGB) playing a pivotal role. This study explores the capability of UAV-borne hyperspectral and LiDAR data for estimating AGB in tropical urban forests. Structural attributes of trees, such as diameter at breast height (DBH), total height, and wood density, were collected from over 5600 individuals, forming a comprehensive AGB dataset. Our methodology included two primary AGB estimation strategies: an area-based strategy that correlated AGB with hyperspectral and canopy height data across various grid sizes and an individual tree crown (ITC)-based method that integrated canopy height, spectral signatures of individual trees and crown area. The findings indicate that increasing the grid size from 10 m to 50 m improved the R2 from 0.24 ± 0.04 to 0.61 ± 0.13, mainly due to reduced border effects. Furthermore, integrating canopy height and hyperspectral data enhanced the R2 of AGB estimates from 0.61 ± 0.13 to 0.70 ± 0.09 for a 50 × 50 m grid. Crucially, wavelengths centered at the green peak and red-edge were identified as key bands in AGB retrieval. Integrating hyperspectral and LiDAR data did not significantly enhance results for individual trees, where AGB was closely linked to tree height and crown area. This study underscores the potential of utilizing integrated UAV-borne sensors for biomass assessment in urban forest settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵敏发布了新的文献求助20
1秒前
默己完成签到 ,获得积分10
3秒前
orixero应助努力飞的麻雀采纳,获得10
3秒前
科研老大妈完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助easymoney采纳,获得10
5秒前
zhonglv7应助xuan采纳,获得10
5秒前
水水完成签到,获得积分10
5秒前
热情的乐荷完成签到,获得积分10
5秒前
微微发布了新的文献求助10
5秒前
千里江山一只蝇完成签到,获得积分10
5秒前
健壮的蘑菇完成签到,获得积分10
6秒前
舍瓦完成签到,获得积分10
7秒前
夏老师完成签到,获得积分10
7秒前
Monica发布了新的文献求助10
8秒前
9秒前
9秒前
lin完成签到,获得积分10
10秒前
善学以致用应助孤独的匕采纳,获得10
10秒前
隐形曼青应助边疆采纳,获得10
10秒前
吕吕完成签到,获得积分10
11秒前
11秒前
852应助健壮的蘑菇采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
yan完成签到,获得积分10
12秒前
13秒前
迷人冥完成签到 ,获得积分10
14秒前
夏老师发布了新的文献求助10
14秒前
14秒前
科研通AI6应助xuan采纳,获得10
15秒前
HBin完成签到,获得积分10
15秒前
16秒前
yan发布了新的文献求助10
17秒前
meteor完成签到 ,获得积分10
18秒前
赘婿应助兔子吃胡萝卜采纳,获得10
18秒前
vivre223发布了新的文献求助10
18秒前
19秒前
lzm发布了新的文献求助10
19秒前
科研宝完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860