Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma

计算机科学 人工智能 模式识别(心理学) 目标检测 接收机工作特性 机器学习
作者
Luqing Zhao,Nan Wang,Xihan Zhu,Zhenyu Wu,Aihua Shen,Lihong Zhang,Ruixin Wang,Dianpeng Wang,Shengsheng Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-61342-6
摘要

Abstract Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed to develop a computational model for real-time detection and classification of colorectal adenoma. Computationally constrained background based on real-time detection, we propose an improved adaptive lightweight ensemble model for real-time detection and classification of adenomas and other polyps. Firstly, we devised an adaptive lightweight network modification and effective training strategy to diminish the computational requirements for real-time detection. Secondly, by integrating the adaptive lightweight YOLOv4 with the single shot multibox detector network, we established the adaptive small object detection ensemble (ASODE) model, which enhances the precision of detecting target polyps without significantly increasing the model's memory footprint. We conducted simulated training using clinical colonoscopy images and videos to validate the method's performance, extracting features from 1148 polyps and employing a confidence threshold of 0.5 to filter out low-confidence sample predictions. Finally, compared to state-of-the-art models, our ASODE model demonstrated superior performance. In the test set, the sensitivity of images and videos reached 87.96% and 92.31%, respectively. Additionally, the ASODE model achieved an accuracy of 92.70% for adenoma detection with a false positive rate of 8.18%. Training results indicate the effectiveness of our method in classifying small polyps. Our model exhibits remarkable performance in real-time detection of colorectal adenomas, serving as a reliable tool for assisting endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子晓时夜发布了新的文献求助10
1秒前
1秒前
yvonne完成签到 ,获得积分10
2秒前
18635986106发布了新的文献求助10
2秒前
zhu完成签到,获得积分10
2秒前
3秒前
悠狸完成签到,获得积分10
3秒前
ykft发布了新的文献求助10
4秒前
li完成签到,获得积分10
4秒前
认真野狼完成签到,获得积分10
5秒前
终抵星空发布了新的文献求助10
5秒前
常常完成签到 ,获得积分10
5秒前
6秒前
fsznc1完成签到 ,获得积分0
6秒前
韩菡关注了科研通微信公众号
7秒前
7秒前
rodrisk完成签到 ,获得积分10
8秒前
8秒前
FFFFF应助武雨寒采纳,获得10
8秒前
科研狗完成签到 ,获得积分10
9秒前
zhu发布了新的文献求助10
9秒前
9秒前
9秒前
L1完成签到 ,获得积分10
10秒前
小李完成签到,获得积分10
11秒前
11秒前
czj发布了新的文献求助10
12秒前
13秒前
负责灵萱完成签到 ,获得积分10
13秒前
等待的凝芙完成签到,获得积分10
14秒前
小二郎应助来日方长采纳,获得10
14秒前
耶耶完成签到,获得积分10
15秒前
15秒前
16秒前
我在青年湖旁完成签到,获得积分10
16秒前
科研通AI6应助咸鱼采纳,获得10
17秒前
qqq发布了新的文献求助20
18秒前
文静的笑阳完成签到,获得积分10
18秒前
CipherSage应助Zh采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186