Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma

计算机科学 人工智能 模式识别(心理学) 目标检测 接收机工作特性 机器学习
作者
Luqing Zhao,Nan Wang,Xihan Zhu,Zhenyu Wu,Aihua Shen,Lihong Zhang,Ruixin Wang,Dianpeng Wang,Shengsheng Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-61342-6
摘要

Abstract Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed to develop a computational model for real-time detection and classification of colorectal adenoma. Computationally constrained background based on real-time detection, we propose an improved adaptive lightweight ensemble model for real-time detection and classification of adenomas and other polyps. Firstly, we devised an adaptive lightweight network modification and effective training strategy to diminish the computational requirements for real-time detection. Secondly, by integrating the adaptive lightweight YOLOv4 with the single shot multibox detector network, we established the adaptive small object detection ensemble (ASODE) model, which enhances the precision of detecting target polyps without significantly increasing the model's memory footprint. We conducted simulated training using clinical colonoscopy images and videos to validate the method's performance, extracting features from 1148 polyps and employing a confidence threshold of 0.5 to filter out low-confidence sample predictions. Finally, compared to state-of-the-art models, our ASODE model demonstrated superior performance. In the test set, the sensitivity of images and videos reached 87.96% and 92.31%, respectively. Additionally, the ASODE model achieved an accuracy of 92.70% for adenoma detection with a false positive rate of 8.18%. Training results indicate the effectiveness of our method in classifying small polyps. Our model exhibits remarkable performance in real-time detection of colorectal adenomas, serving as a reliable tool for assisting endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠呆呆鱼完成签到 ,获得积分10
1秒前
JamesYang发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
JIN完成签到,获得积分10
2秒前
3秒前
顺利毕业完成签到,获得积分10
4秒前
4秒前
Zzzhou23发布了新的文献求助30
5秒前
xxx发布了新的文献求助10
5秒前
Yuanyuan发布了新的文献求助10
6秒前
XU徐发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
顺利毕业发布了新的文献求助10
8秒前
8秒前
8秒前
漫游完成签到,获得积分10
8秒前
9秒前
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
快乐的厉完成签到,获得积分10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
Twonej应助科研通管家采纳,获得30
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
ding应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
稳重峻熙完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420