Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma

计算机科学 人工智能 模式识别(心理学) 目标检测 接收机工作特性 机器学习
作者
Luqing Zhao,Nan Wang,Xihan Zhu,Zhenyu Wu,Aihua Shen,Lihong Zhang,Ruixin Wang,Dianpeng Wang,Shengsheng Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-61342-6
摘要

Abstract Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed to develop a computational model for real-time detection and classification of colorectal adenoma. Computationally constrained background based on real-time detection, we propose an improved adaptive lightweight ensemble model for real-time detection and classification of adenomas and other polyps. Firstly, we devised an adaptive lightweight network modification and effective training strategy to diminish the computational requirements for real-time detection. Secondly, by integrating the adaptive lightweight YOLOv4 with the single shot multibox detector network, we established the adaptive small object detection ensemble (ASODE) model, which enhances the precision of detecting target polyps without significantly increasing the model's memory footprint. We conducted simulated training using clinical colonoscopy images and videos to validate the method's performance, extracting features from 1148 polyps and employing a confidence threshold of 0.5 to filter out low-confidence sample predictions. Finally, compared to state-of-the-art models, our ASODE model demonstrated superior performance. In the test set, the sensitivity of images and videos reached 87.96% and 92.31%, respectively. Additionally, the ASODE model achieved an accuracy of 92.70% for adenoma detection with a false positive rate of 8.18%. Training results indicate the effectiveness of our method in classifying small polyps. Our model exhibits remarkable performance in real-time detection of colorectal adenomas, serving as a reliable tool for assisting endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助怡然的半梦采纳,获得10
1秒前
无极微光应助ttt采纳,获得20
1秒前
ArcMayuri完成签到,获得积分10
2秒前
小天才发布了新的文献求助10
2秒前
勤奋的一手完成签到,获得积分10
2秒前
无极微光应助bai采纳,获得20
3秒前
Andone完成签到,获得积分10
3秒前
3秒前
3秒前
LH完成签到,获得积分10
4秒前
4秒前
无私的朝雪完成签到,获得积分10
4秒前
Ava应助正直听芹采纳,获得10
4秒前
txy关注了科研通微信公众号
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
33完成签到,获得积分10
7秒前
NCS完成签到,获得积分10
7秒前
乐乐应助香橙采纳,获得10
7秒前
狄拉克乐园完成签到,获得积分10
8秒前
爆米花应助renkemaomao采纳,获得10
8秒前
完美世界应助Max采纳,获得10
8秒前
Cyrus完成签到,获得积分10
8秒前
8秒前
充电宝应助楚天正阔采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
老迟到的友菱完成签到,获得积分10
9秒前
10秒前
NexusExplorer应助小天才采纳,获得10
11秒前
strawberry发布了新的文献求助10
11秒前
11秒前
斯文败类应助DYZ采纳,获得10
11秒前
11发布了新的文献求助30
12秒前
肯德大厨完成签到 ,获得积分10
12秒前
jojo完成签到 ,获得积分10
12秒前
12秒前
13秒前
Owen应助lixxx采纳,获得10
13秒前
高山流水应助Makta采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680