亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma

计算机科学 人工智能 模式识别(心理学) 目标检测 接收机工作特性 机器学习
作者
Luqing Zhao,Nan Wang,Xihan Zhu,Zhenyu Wu,Aihua Shen,Lihong Zhang,Ruixin Wang,Dianpeng Wang,Shengsheng Zhang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-61342-6
摘要

Abstract Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed to develop a computational model for real-time detection and classification of colorectal adenoma. Computationally constrained background based on real-time detection, we propose an improved adaptive lightweight ensemble model for real-time detection and classification of adenomas and other polyps. Firstly, we devised an adaptive lightweight network modification and effective training strategy to diminish the computational requirements for real-time detection. Secondly, by integrating the adaptive lightweight YOLOv4 with the single shot multibox detector network, we established the adaptive small object detection ensemble (ASODE) model, which enhances the precision of detecting target polyps without significantly increasing the model's memory footprint. We conducted simulated training using clinical colonoscopy images and videos to validate the method's performance, extracting features from 1148 polyps and employing a confidence threshold of 0.5 to filter out low-confidence sample predictions. Finally, compared to state-of-the-art models, our ASODE model demonstrated superior performance. In the test set, the sensitivity of images and videos reached 87.96% and 92.31%, respectively. Additionally, the ASODE model achieved an accuracy of 92.70% for adenoma detection with a false positive rate of 8.18%. Training results indicate the effectiveness of our method in classifying small polyps. Our model exhibits remarkable performance in real-time detection of colorectal adenomas, serving as a reliable tool for assisting endoscopists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和风完成签到 ,获得积分10
刚刚
7秒前
24秒前
25秒前
39秒前
41秒前
41秒前
55秒前
56秒前
57秒前
MY发布了新的文献求助30
59秒前
59秒前
ding应助害羞的冰激凌采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
aaaa完成签到,获得积分20
1分钟前
1分钟前
1分钟前
耍酷如柏发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
lixiaorui发布了新的文献求助30
1分钟前
耍酷如柏完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yanglinhai完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
2分钟前
2分钟前
sissiarno应助科研通管家采纳,获得30
3分钟前
牢孙发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
牢孙完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254426
求助须知:如何正确求助?哪些是违规求助? 4417336
关于积分的说明 13751271
捐赠科研通 4290010
什么是DOI,文献DOI怎么找? 2353954
邀请新用户注册赠送积分活动 1350565
关于科研通互助平台的介绍 1310718