Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma

计算机科学 人工智能 模式识别(心理学) 目标检测 接收机工作特性 机器学习
作者
Luqing Zhao,Nan Wang,Xihan Zhu,Zhenyu Wu,Aihua Shen,Lihong Zhang,Ruixin Wang,Dianpeng Wang,Shengsheng Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-61342-6
摘要

Abstract Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed to develop a computational model for real-time detection and classification of colorectal adenoma. Computationally constrained background based on real-time detection, we propose an improved adaptive lightweight ensemble model for real-time detection and classification of adenomas and other polyps. Firstly, we devised an adaptive lightweight network modification and effective training strategy to diminish the computational requirements for real-time detection. Secondly, by integrating the adaptive lightweight YOLOv4 with the single shot multibox detector network, we established the adaptive small object detection ensemble (ASODE) model, which enhances the precision of detecting target polyps without significantly increasing the model's memory footprint. We conducted simulated training using clinical colonoscopy images and videos to validate the method's performance, extracting features from 1148 polyps and employing a confidence threshold of 0.5 to filter out low-confidence sample predictions. Finally, compared to state-of-the-art models, our ASODE model demonstrated superior performance. In the test set, the sensitivity of images and videos reached 87.96% and 92.31%, respectively. Additionally, the ASODE model achieved an accuracy of 92.70% for adenoma detection with a false positive rate of 8.18%. Training results indicate the effectiveness of our method in classifying small polyps. Our model exhibits remarkable performance in real-time detection of colorectal adenomas, serving as a reliable tool for assisting endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海鸥海鸥发布了新的文献求助10
刚刚
别让我误会完成签到 ,获得积分10
1秒前
1秒前
KK发布了新的文献求助30
1秒前
娃娃完成签到 ,获得积分20
1秒前
科研通AI5应助结实的冰真采纳,获得30
1秒前
冷静的小熊猫完成签到,获得积分10
2秒前
Donnie完成签到,获得积分10
2秒前
若尘完成签到,获得积分10
3秒前
椰子完成签到 ,获得积分10
3秒前
3秒前
细腻涵菱完成签到,获得积分10
4秒前
吕耀炜完成签到,获得积分10
4秒前
4秒前
4秒前
简称王完成签到 ,获得积分10
4秒前
蓝莓松饼完成签到,获得积分10
5秒前
一路高飛完成签到,获得积分10
5秒前
赘婿应助andyxrz采纳,获得10
5秒前
Zhang完成签到,获得积分10
5秒前
6秒前
年轻冥茗完成签到,获得积分10
6秒前
apple发布了新的文献求助10
7秒前
CarterXD完成签到,获得积分10
7秒前
紧张的友灵完成签到,获得积分10
7秒前
SciGPT应助之仔饼采纳,获得10
8秒前
liudiqiu应助追寻的易烟采纳,获得10
8秒前
Chem is try发布了新的文献求助10
8秒前
8秒前
vsoar完成签到,获得积分10
8秒前
9秒前
10秒前
GGGGGGGGGG发布了新的文献求助10
10秒前
10秒前
打打应助hhh采纳,获得10
11秒前
抓恐龙关注了科研通微信公众号
11秒前
碳点godfather完成签到,获得积分10
11秒前
ren完成签到,获得积分20
11秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
12秒前
TG_FY完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672