Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma

计算机科学 人工智能 模式识别(心理学) 目标检测 接收机工作特性 机器学习
作者
Luqing Zhao,Nan Wang,Xihan Zhu,Zhenyu Wu,Aihua Shen,Lihong Zhang,Ruixin Wang,Dianpeng Wang,Shengsheng Zhang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-61342-6
摘要

Abstract Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed to develop a computational model for real-time detection and classification of colorectal adenoma. Computationally constrained background based on real-time detection, we propose an improved adaptive lightweight ensemble model for real-time detection and classification of adenomas and other polyps. Firstly, we devised an adaptive lightweight network modification and effective training strategy to diminish the computational requirements for real-time detection. Secondly, by integrating the adaptive lightweight YOLOv4 with the single shot multibox detector network, we established the adaptive small object detection ensemble (ASODE) model, which enhances the precision of detecting target polyps without significantly increasing the model's memory footprint. We conducted simulated training using clinical colonoscopy images and videos to validate the method's performance, extracting features from 1148 polyps and employing a confidence threshold of 0.5 to filter out low-confidence sample predictions. Finally, compared to state-of-the-art models, our ASODE model demonstrated superior performance. In the test set, the sensitivity of images and videos reached 87.96% and 92.31%, respectively. Additionally, the ASODE model achieved an accuracy of 92.70% for adenoma detection with a false positive rate of 8.18%. Training results indicate the effectiveness of our method in classifying small polyps. Our model exhibits remarkable performance in real-time detection of colorectal adenomas, serving as a reliable tool for assisting endoscopists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苞大米发布了新的文献求助10
1秒前
1秒前
沉默凡桃发布了新的文献求助10
1秒前
xuk完成签到,获得积分10
3秒前
大个应助轻松砖头采纳,获得10
4秒前
4秒前
英勇的绿海完成签到,获得积分10
6秒前
hanye发布了新的文献求助10
7秒前
MchemG应助庾觅松采纳,获得30
8秒前
小二郎应助ADGAI采纳,获得10
9秒前
那年的伟哥应助玖Nine采纳,获得10
9秒前
大模型应助玖Nine采纳,获得10
9秒前
哈哈哈发布了新的文献求助10
11秒前
健壮不斜完成签到 ,获得积分10
14秒前
爆米花应助Leoling采纳,获得10
15秒前
illusion完成签到,获得积分10
16秒前
blingbling完成签到,获得积分10
16秒前
17秒前
FashionBoy应助bofu采纳,获得10
17秒前
20秒前
21秒前
bkagyin应助小束爱吃樱桃采纳,获得10
22秒前
23秒前
23秒前
yang发布了新的文献求助10
23秒前
英姑应助无辜秋珊采纳,获得10
24秒前
ADGAI发布了新的文献求助10
25秒前
26秒前
苞大米完成签到,获得积分10
26秒前
27秒前
Akim应助bofu采纳,获得20
29秒前
11发布了新的文献求助10
30秒前
超级的西装完成签到 ,获得积分20
31秒前
解语花发布了新的文献求助30
31秒前
32秒前
35秒前
36秒前
第一张完成签到,获得积分10
36秒前
轻松砖头发布了新的文献求助10
37秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167