Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma

计算机科学 人工智能 模式识别(心理学) 目标检测 接收机工作特性 机器学习
作者
Luqing Zhao,Nan Wang,Xihan Zhu,Zhenyu Wu,Aihua Shen,Lihong Zhang,Ruixin Wang,Dianpeng Wang,Shengsheng Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-61342-6
摘要

Abstract Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed to develop a computational model for real-time detection and classification of colorectal adenoma. Computationally constrained background based on real-time detection, we propose an improved adaptive lightweight ensemble model for real-time detection and classification of adenomas and other polyps. Firstly, we devised an adaptive lightweight network modification and effective training strategy to diminish the computational requirements for real-time detection. Secondly, by integrating the adaptive lightweight YOLOv4 with the single shot multibox detector network, we established the adaptive small object detection ensemble (ASODE) model, which enhances the precision of detecting target polyps without significantly increasing the model's memory footprint. We conducted simulated training using clinical colonoscopy images and videos to validate the method's performance, extracting features from 1148 polyps and employing a confidence threshold of 0.5 to filter out low-confidence sample predictions. Finally, compared to state-of-the-art models, our ASODE model demonstrated superior performance. In the test set, the sensitivity of images and videos reached 87.96% and 92.31%, respectively. Additionally, the ASODE model achieved an accuracy of 92.70% for adenoma detection with a false positive rate of 8.18%. Training results indicate the effectiveness of our method in classifying small polyps. Our model exhibits remarkable performance in real-time detection of colorectal adenomas, serving as a reliable tool for assisting endoscopists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
57r7uf发布了新的文献求助30
刚刚
1秒前
虾虾发布了新的文献求助10
1秒前
2秒前
在水一方应助huhubei采纳,获得10
4秒前
wangli发布了新的文献求助10
4秒前
深情安青应助zmy采纳,获得10
5秒前
5秒前
cm完成签到,获得积分10
6秒前
Hello应助鳗鱼灰狼采纳,获得10
9秒前
情怀应助wangli采纳,获得10
10秒前
57r7uf完成签到,获得积分10
11秒前
桐桐应助呆呆采纳,获得10
11秒前
Lucas应助txt0127采纳,获得10
11秒前
有点甜完成签到,获得积分10
12秒前
科研通AI2S应助SYSUer采纳,获得10
12秒前
ding应助Evaporate采纳,获得10
14秒前
14秒前
cdragon完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
16秒前
cellur发布了新的文献求助10
18秒前
寂寞的听双完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
wwwwwei发布了新的文献求助10
19秒前
Picopy完成签到,获得积分10
19秒前
yolo发布了新的文献求助10
19秒前
alazka发布了新的文献求助10
21秒前
李健应助全能采纳,获得10
22秒前
zls完成签到,获得积分10
23秒前
诸葛不亮完成签到,获得积分10
23秒前
25秒前
green完成签到,获得积分10
25秒前
25秒前
25秒前
28秒前
eryu25完成签到 ,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492586
求助须知:如何正确求助?哪些是违规求助? 4590623
关于积分的说明 14431212
捐赠科研通 4523084
什么是DOI,文献DOI怎么找? 2478175
邀请新用户注册赠送积分活动 1463195
关于科研通互助平台的介绍 1435900