Comprehensive analysis of network robustness evaluation based on convolutional neural networks with spatial pyramid pooling

联营 稳健性(进化) 卷积神经网络 计算机科学 人工智能 棱锥(几何) 模式识别(心理学) 机器学习 数学 几何学 生物化学 基因 化学
作者
Wenjun Jiang,Tianlong Fan,Changhao Li,Chuanfu Zhang,Tao Zhang,Zhonghua Luo
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:184: 115023-115023 被引量:1
标识
DOI:10.1016/j.chaos.2024.115023
摘要

Connectivity robustness, crucial for network understanding, optimization, and repair, has been evaluated traditionally through time-consuming and often impractical simulations. Fortunately, machine learning provides a novel solution. However, unresolved challenges persist: performance in more general edge removal scenarios, capturing robustness via attack curves instead of directly training for robustness, scalability of predictive tasks, and transferability of predictive capabilities. Here, we try to address these challenges by designing a convolutional neural networks (CNN) model with spatial pyramid pooling networks (SPP-net), adapting existing evaluation metrics, redesigning the attack modes, introducing appropriate filtering rules, and incorporating the value of robustness as training data. Results indicate that the CNN framework consistently provides accurate evaluations of attack curves and robustness values across all removal scenarios when the evaluation task aligns with the trained network type. This effectiveness is observed for various network types, failure component types, and failure scenarios, highlighting the scalability in task scale and the transferability in performance of our model. However, the performance of the CNN framework falls short of expectations in various removal scenarios when the predicted task corresponds to a different network type than the one it was trained on, except for random node failures. Furthermore, our work suggests that directly predicting robustness values yields higher accuracy than capturing them through attack curve prediction. In addition, the observed scenario-sensitivity has been overlooked, and the transferability of predictive capability has been overestimated in the evaluation of network features in previous studies, necessitating further optimization. Finally, we discuss several important unresolved questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噼里啪啦完成签到,获得积分10
1秒前
高源源发布了新的文献求助10
1秒前
愉快迎南完成签到,获得积分10
2秒前
Hello应助太叔若南采纳,获得10
2秒前
自由的傲易完成签到,获得积分10
2秒前
3秒前
4秒前
安笙凉城发布了新的文献求助10
4秒前
NexusExplorer应助娟娟采纳,获得10
6秒前
烟花应助杜兰特采纳,获得10
7秒前
一直发布了新的文献求助10
9秒前
赘婿应助高源源采纳,获得10
10秒前
lr完成签到 ,获得积分10
10秒前
123456hhh完成签到,获得积分10
10秒前
翻斗花园爆破手小胡完成签到,获得积分10
11秒前
李健的小迷弟应助钱罐罐采纳,获得10
12秒前
13秒前
13秒前
思源应助欢乐谷采纳,获得10
14秒前
杜兰特发布了新的文献求助10
19秒前
19秒前
666应助寒冷水卉采纳,获得10
19秒前
根根发布了新的文献求助10
20秒前
可爱的香岚完成签到 ,获得积分10
23秒前
东郭寄灵发布了新的文献求助10
23秒前
25秒前
26秒前
玩笑话完成签到,获得积分10
28秒前
cwy发布了新的文献求助10
29秒前
32秒前
666应助一直采纳,获得10
32秒前
加菲丰丰应助cwy采纳,获得10
33秒前
lulalula完成签到,获得积分10
37秒前
37秒前
38秒前
44秒前
45秒前
勤劳莹芝完成签到 ,获得积分20
47秒前
3210592完成签到 ,获得积分10
47秒前
科研通AI2S应助根根采纳,获得10
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361