A Convolutional-Transformer Model for FFR and iFR Assessment From Coronary Angiography

部分流量储备 狭窄 可解释性 血管造影 计算机科学 人工智能 医学 变压器 放射科 心脏病学 模式识别(心理学) 冠状动脉造影 心肌梗塞 物理 量子力学 电压
作者
Raffaele Mineo,Federica Proietto Salanitri,Giovanni Bellitto,Isaak Kavasidis,Ovidio De Filippo,M Millesimo,Gaetano Maria De Ferrari,Marco Aldinucci,Daniela Giordano,Simone Palazzo,F D’Ascenzo,Concetto Spampinato
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2866-2877 被引量:1
标识
DOI:10.1109/tmi.2024.3383283
摘要

The quantification of stenosis severity from X-ray catheter angiography is a challenging task. Indeed, this requires to fully understand the lesion's geometry by analyzing dynamics of the contrast material, only relying on visual observation by clinicians. To support decision making for cardiac intervention, we propose a hybrid CNN-Transformer model for the assessment of angiography-based non-invasive fractional flow-reserve (FFR) and instantaneous wave-free ratio (iFR) of intermediate coronary stenosis. Our approach predicts whether a coronary artery stenosis is hemodynamically significant and provides direct FFR and iFR estimates. This is achieved through a combination of regression and classification branches that forces the model to focus on the cut-off region of FFR (around 0.8 FFR value), which is highly critical for decision-making. We also propose a spatio-temporal factorization mechanisms that redesigns the transformer's self-attention mechanism to capture both local spatial and temporal interactions between vessel geometry, blood flow dynamics, and lesion morphology. The proposed method achieves state-of-the-art performance on a dataset of 778 exams from 389 patients. Unlike existing methods, our approach employs a single angiography view and does not require knowledge of the key frame; supervision at training time is provided by a classification loss (based on a threshold of the FFR/iFR values) and a regression loss for direct estimation. Finally, the analysis of model interpretability and calibration shows that, in spite of the complexity of angiographic imaging data, our method can robustly identify the location of the stenosis and correlate prediction uncertainty to the provided output scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
4秒前
5秒前
乐呀完成签到,获得积分10
5秒前
木头人呐完成签到 ,获得积分10
5秒前
小马甲应助吴岳采纳,获得10
5秒前
天天向上赶完成签到,获得积分10
5秒前
整齐的凡梦完成签到,获得积分10
6秒前
孙冉冉发布了新的文献求助10
7秒前
MHB应助towerman采纳,获得10
8秒前
Dean发布了新的文献求助10
8秒前
9秒前
加油加油发布了新的文献求助10
9秒前
lili完成签到 ,获得积分10
10秒前
文剑武书生完成签到,获得积分10
11秒前
科研通AI5应助无限鞅采纳,获得10
11秒前
11秒前
852应助木棉采纳,获得10
11秒前
12秒前
卓哥完成签到,获得积分10
13秒前
14秒前
Agan发布了新的文献求助10
14秒前
14秒前
15秒前
morlison发布了新的文献求助10
15秒前
科研通AI5应助金色年华采纳,获得10
17秒前
充电宝应助kh453采纳,获得10
17秒前
正经俠发布了新的文献求助10
17秒前
一衣发布了新的文献求助20
18秒前
可爱的函函应助药学牛马采纳,获得10
18秒前
XM发布了新的文献求助10
18秒前
专注之双完成签到,获得积分10
19秒前
SciGPT应助十一采纳,获得10
19秒前
19秒前
A1234完成签到,获得积分10
20秒前
刘铭晨发布了新的文献求助10
21秒前
孙冉冉完成签到 ,获得积分10
24秒前
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808