一般化
断层(地质)
领域(数学分析)
计算机科学
人工智能
地质学
数学
地震学
数学分析
标识
DOI:10.1016/j.psep.2024.05.106
摘要
Recent developments in fault diagnosis have leveraged domain generalization to address the issue of domain shift. Most existing methods focus on learning domain-invariant representations from multiple source domains. However, collecting valuable fault samples from varying operational conditions is challenging, and it is common for available data to originate from a single operational condition. Thus, this paper introduces a Multi-scale generative and adversarial Metric networks (MGAMN) for Chemical Process Fault Diagnosis. To enhance model generalization, a domain generation module was developed to create augmented domains with significant distributional differences from the source domain. The diagnostic task module then extracts domain-invariant features from both the source and augmented domains. A multi-scale generation strategy is established, utilizing multi-scale deep separable convolutions (Dsc) to ensure that the generated samples contain rich state information. Additionally, an adversarial training and metric learning strategy is designed to learn generalized features capable of resisting unknown domain shifts. Extensive diagnostic experiments on the non-isothermal continuous stirred tank reactor (CSTR) and the Tennessee Eastman Process (TEP) chemical datasets validate the effectiveness of the proposed method. Moreover, ablation studies confirm the effectiveness of the proposed modular strategy, demonstrating significant potential for practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI