Chemical fault diagnosis network based on single domain generalization

一般化 断层(地质) 领域(数学分析) 计算机科学 人工智能 地质学 数学 地震学 数学分析
作者
Yu Guo,Jundong Zhang
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:188: 1133-1144
标识
DOI:10.1016/j.psep.2024.05.106
摘要

Recent developments in fault diagnosis have leveraged domain generalization to address the issue of domain shift. Most existing methods focus on learning domain-invariant representations from multiple source domains. However, collecting valuable fault samples from varying operational conditions is challenging, and it is common for available data to originate from a single operational condition. Thus, this paper introduces a Multi-scale generative and adversarial Metric networks (MGAMN) for Chemical Process Fault Diagnosis. To enhance model generalization, a domain generation module was developed to create augmented domains with significant distributional differences from the source domain. The diagnostic task module then extracts domain-invariant features from both the source and augmented domains. A multi-scale generation strategy is established, utilizing multi-scale deep separable convolutions (Dsc) to ensure that the generated samples contain rich state information. Additionally, an adversarial training and metric learning strategy is designed to learn generalized features capable of resisting unknown domain shifts. Extensive diagnostic experiments on the non-isothermal continuous stirred tank reactor (CSTR) and the Tennessee Eastman Process (TEP) chemical datasets validate the effectiveness of the proposed method. Moreover, ablation studies confirm the effectiveness of the proposed modular strategy, demonstrating significant potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佩琪完成签到 ,获得积分10
1秒前
充电宝应助延续采纳,获得10
2秒前
present发布了新的文献求助10
2秒前
rosa发布了新的文献求助10
2秒前
YEGE发布了新的文献求助10
3秒前
4秒前
5秒前
大兵发布了新的文献求助10
6秒前
...完成签到 ,获得积分0
6秒前
汉堡包应助无误采纳,获得10
7秒前
8秒前
小蘑菇应助拜拜采纳,获得10
8秒前
善良的鹏笑完成签到,获得积分10
9秒前
10秒前
狂野的访文完成签到,获得积分10
11秒前
13秒前
14秒前
why发布了新的文献求助10
14秒前
haimianbaobao完成签到 ,获得积分10
15秒前
酷波er应助大兵采纳,获得10
15秒前
YEGE完成签到,获得积分10
17秒前
wonhui发布了新的文献求助10
18秒前
18秒前
无误发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
shenyu发布了新的文献求助10
23秒前
bkagyin应助Michael采纳,获得10
27秒前
27秒前
Ffegrbgbsssgr发布了新的文献求助10
28秒前
do0发布了新的文献求助10
29秒前
研友_Y59785应助勤劳的鸡采纳,获得10
32秒前
难过千易发布了新的文献求助10
32秒前
默默小笼包完成签到,获得积分10
33秒前
兲卷儿完成签到,获得积分10
33秒前
FashionBoy应助shenyu采纳,获得10
34秒前
Ffegrbgbsssgr完成签到,获得积分20
34秒前
温暖白柏发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075