Fragment-Fusion Transformer: Deep Learning-Based Discretization Method for Continuous Single-Cell Raman Spectral Analysis

模式识别(心理学) 人工智能 融合 计算机科学 特征提取 生物系统 离散化 变压器 拉曼光谱 数学 物理 电压 光学 数学分析 哲学 生物 量子力学 语言学
作者
Qiang Yu,Xiaokun Shen,Langlang Yi,Minghui Liang,Guoqian Li,Zhihui Guan,Xiaoyao Wu,Hélène Castel,Bo Hu,Pengju Yin,Wenbo Zhang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (8): 3907-3920 被引量:1
标识
DOI:10.1021/acssensors.4c00149
摘要

Raman spectroscopy has become an important single-cell analysis tool for monitoring biochemical changes at the cellular level. However, Raman spectral data, typically presented as continuous data with high-dimensional characteristics, is distinct from discrete sequences, which limits the application of deep learning-based algorithms in data analysis due to the lack of discretization. Herein, a model called fragment-fusion transformer is proposed, which integrates the discrete fragmentation of continuous spectra based on their intrinsic characteristics with the extraction of intrafragment features and the fusion of interfragment features. The model integrates the intrinsic feature-based fragmentation of spectra with transformer, constructing the fragment transformer block for feature extraction within fragments. Interfragment information is combined through the pyramid design structure to improve the model's receptive field and fully exploit the spectral properties. During the pyramidal fusion process, the information gain of the final extracted features in the spectrum has been enhanced by a factor of 9.24 compared to the feature extraction stage within the fragment, and the information entropy has been enhanced by a factor of 13. The fragment-fusion transformer achieved a spectral recognition accuracy of 94.5%, which is 4% higher compared to the method without fragmentation and fusion processes on the test set of cell Raman spectroscopy identification experiments. In comparison to common spectral classification models such as KNN, SVM, logistic regression, and CNN, fragment-fusion transformer has achieved 4.4% higher accuracy than the best-performing CNN model. Fragment-fusion transformer method has the potential to serve as a general framework for discretization in the field of continuous spectral data analysis and as a research tool for analyzing the intrinsic information within spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助李李李采纳,获得10
1秒前
tsuki完成签到 ,获得积分10
1秒前
1秒前
3秒前
星辰大海应助Courageous采纳,获得10
4秒前
哒哒发布了新的文献求助10
4秒前
Jasper应助meimei采纳,获得10
5秒前
俏皮若之发布了新的文献求助10
9秒前
绿竹完成签到,获得积分10
9秒前
朴素乐菱完成签到,获得积分10
9秒前
情怀应助香蕉元风采纳,获得10
10秒前
坦率的枕头完成签到,获得积分10
10秒前
11秒前
哒哒完成签到,获得积分10
11秒前
11秒前
射天狼发布了新的文献求助10
12秒前
meimei完成签到,获得积分20
14秒前
16秒前
16秒前
16秒前
dong应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
科研通AI2S应助sihui采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
19秒前
Ricey应助科研通管家采纳,获得10
19秒前
王子安应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得50
19秒前
上官若男应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
Vincent完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712