Fragment-Fusion Transformer: Deep Learning-Based Discretization Method for Continuous Single-Cell Raman Spectral Analysis

模式识别(心理学) 人工智能 融合 计算机科学 特征提取 生物系统 离散化 变压器 拉曼光谱 数学 物理 电压 光学 数学分析 哲学 生物 量子力学 语言学
作者
Qiang Yu,Xiaokun Shen,Langlang Yi,Minghui Liang,Guoqian Li,Zhihui Guan,Xiaoyao Wu,Hélène Castel,Bo Hu,Pengju Yin,Wenbo Zhang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c00149
摘要

Raman spectroscopy has become an important single-cell analysis tool for monitoring biochemical changes at the cellular level. However, Raman spectral data, typically presented as continuous data with high-dimensional characteristics, is distinct from discrete sequences, which limits the application of deep learning-based algorithms in data analysis due to the lack of discretization. Herein, a model called fragment-fusion transformer is proposed, which integrates the discrete fragmentation of continuous spectra based on their intrinsic characteristics with the extraction of intrafragment features and the fusion of interfragment features. The model integrates the intrinsic feature-based fragmentation of spectra with transformer, constructing the fragment transformer block for feature extraction within fragments. Interfragment information is combined through the pyramid design structure to improve the model's receptive field and fully exploit the spectral properties. During the pyramidal fusion process, the information gain of the final extracted features in the spectrum has been enhanced by a factor of 9.24 compared to the feature extraction stage within the fragment, and the information entropy has been enhanced by a factor of 13. The fragment-fusion transformer achieved a spectral recognition accuracy of 94.5%, which is 4% higher compared to the method without fragmentation and fusion processes on the test set of cell Raman spectroscopy identification experiments. In comparison to common spectral classification models such as KNN, SVM, logistic regression, and CNN, fragment-fusion transformer has achieved 4.4% higher accuracy than the best-performing CNN model. Fragment-fusion transformer method has the potential to serve as a general framework for discretization in the field of continuous spectral data analysis and as a research tool for analyzing the intrinsic information within spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
Ma完成签到,获得积分10
2秒前
dandan发布了新的文献求助10
2秒前
hujushan完成签到,获得积分10
2秒前
小篆完成签到 ,获得积分10
3秒前
无限白易完成签到 ,获得积分10
4秒前
4秒前
莉莉芙完成签到 ,获得积分10
5秒前
独特听芹完成签到,获得积分10
6秒前
秋水发布了新的文献求助10
8秒前
朴实雨珍发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
Youdge完成签到,获得积分10
11秒前
朴素的月光完成签到,获得积分10
12秒前
ly完成签到,获得积分10
13秒前
邮一颗草莓完成签到 ,获得积分10
13秒前
13秒前
14秒前
CT民工完成签到,获得积分10
14秒前
李健应助甜蜜的冰枫采纳,获得10
14秒前
杜杨帆完成签到,获得积分10
15秒前
ok123完成签到 ,获得积分10
15秒前
15秒前
月光一样的少年完成签到,获得积分10
15秒前
why完成签到 ,获得积分10
16秒前
陈陈陈发布了新的文献求助10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
搜集达人应助殷超采纳,获得10
21秒前
淡定的饼干完成签到,获得积分20
21秒前
ddttdt发布了新的文献求助10
23秒前
kirirto完成签到,获得积分10
23秒前
23秒前
23秒前
苏卿应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662463
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750686
捐赠科研通 2933115
什么是DOI,文献DOI怎么找? 1605919
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743