Generative Adversarial Network-Based Framework for Accurate DTS Logging Curve Generation in Heterogeneous Reservoirs

对抗制 计算机科学 生成对抗网络 登录中 生成语法 人工智能 深度学习 生态学 生物
作者
Jing Wang,Bo Kang,Y. C. Cheng,Hehua Wang,Zhongrong Mi,Yong Xiao,Xing Zhao,Yan Feng,Jianchun Guo,Cong Da Lu
标识
DOI:10.2118/220054-ms
摘要

Abstract Accurate generation of missing share wave slowness (DTS) logging curve is significant for the precise reservoir evaluation. While various data-driven prediction models have been proposed, only a few addresses the intricate details of the DTS curve shape, and it is significant for reservoirs with strong heterogeneity. In this study, a novel DTS generation framework consisting of generator and discriminator was established based on generative adversarial network. In the generator, with the input of compressional wave slowness and compensated neutron curves, the recurrent neural network was applied to gain insight into the general pattern and generate DTS curves. In the discriminator, the convolutional neural network was adopted to compare the detailed shape and evaluate the realness of generated DTS curves. Both the generator and discriminator underwent concurrent training, aiming for model convergence and achieving a close distribution resemblance between the generated DTS curves and authentic data. The proposed DTS generation framework was practically applied in a shale gas field in the Sichuan basin of China. By segmenting the complete logging curves from over 100 wells, 47200 sequences with a length of 32 were obtained in the dataset. After 50 rounds and 26900 training cycles, the generation model exhibited robust performance with an average relative error of 0.015, and a coefficient of determination of 0.91. The frequency distribution of the generated DTS value closely resembled that of the real ones, confirming the generation ability for both overall fluctuation and local detailed shape. Moreover, a blind test on logging curves in 8 wells revealed a high shape agreement between the generated and real DTS curves, indicating the applicability of the proposed generation framework. Unlike the conventional approaches emphasizing the overall trend of DTS curves, the proposed framework introduces an additional discriminator to enhance the generation ability for intricate local details, leading to significantly improved generation performance. This study underscores the potential of advanced artificial intelligence methodologies for precious logging curve generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cmy完成签到,获得积分10
刚刚
刚刚
笨蛋琪露诺完成签到,获得积分10
1秒前
专注的易文完成签到,获得积分10
1秒前
1秒前
刘怀蕊发布了新的文献求助10
1秒前
2秒前
2秒前
sptyzl完成签到 ,获得积分10
3秒前
彭于晏应助mnm采纳,获得10
3秒前
叙余完成签到 ,获得积分10
3秒前
3秒前
狗狗应助April采纳,获得20
3秒前
科研通AI2S应助笑笑采纳,获得10
4秒前
靳乐乐完成签到,获得积分10
4秒前
ccyrichard完成签到,获得积分10
4秒前
5秒前
su完成签到,获得积分20
5秒前
天天快乐应助刘怀蕊采纳,获得10
5秒前
5秒前
t_suo发布了新的文献求助30
6秒前
LJL发布了新的文献求助10
7秒前
xyz发布了新的文献求助10
7秒前
婷婷完成签到,获得积分10
7秒前
翔哥完成签到,获得积分10
8秒前
shotgod发布了新的文献求助10
8秒前
消烦员完成签到 ,获得积分10
8秒前
杳鸢应助su采纳,获得30
10秒前
good发布了新的文献求助10
10秒前
chenxin7271完成签到,获得积分10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
yizhiGao应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
马蹄应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
研友_LX66qZ完成签到,获得积分10
10秒前
传奇3应助科研通管家采纳,获得30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762