Generative Adversarial Network-Based Framework for Accurate DTS Logging Curve Generation in Heterogeneous Reservoirs

对抗制 计算机科学 生成对抗网络 登录中 生成语法 人工智能 深度学习 生态学 生物
作者
Jing Wang,Bo Kang,Y. C. Cheng,Hehua Wang,Zhongrong Mi,Yong Xiao,Xing Zhao,Yan Feng,Jianchun Guo,Cong Da Lu
标识
DOI:10.2118/220054-ms
摘要

Abstract Accurate generation of missing share wave slowness (DTS) logging curve is significant for the precise reservoir evaluation. While various data-driven prediction models have been proposed, only a few addresses the intricate details of the DTS curve shape, and it is significant for reservoirs with strong heterogeneity. In this study, a novel DTS generation framework consisting of generator and discriminator was established based on generative adversarial network. In the generator, with the input of compressional wave slowness and compensated neutron curves, the recurrent neural network was applied to gain insight into the general pattern and generate DTS curves. In the discriminator, the convolutional neural network was adopted to compare the detailed shape and evaluate the realness of generated DTS curves. Both the generator and discriminator underwent concurrent training, aiming for model convergence and achieving a close distribution resemblance between the generated DTS curves and authentic data. The proposed DTS generation framework was practically applied in a shale gas field in the Sichuan basin of China. By segmenting the complete logging curves from over 100 wells, 47200 sequences with a length of 32 were obtained in the dataset. After 50 rounds and 26900 training cycles, the generation model exhibited robust performance with an average relative error of 0.015, and a coefficient of determination of 0.91. The frequency distribution of the generated DTS value closely resembled that of the real ones, confirming the generation ability for both overall fluctuation and local detailed shape. Moreover, a blind test on logging curves in 8 wells revealed a high shape agreement between the generated and real DTS curves, indicating the applicability of the proposed generation framework. Unlike the conventional approaches emphasizing the overall trend of DTS curves, the proposed framework introduces an additional discriminator to enhance the generation ability for intricate local details, leading to significantly improved generation performance. This study underscores the potential of advanced artificial intelligence methodologies for precious logging curve generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨忘幽完成签到,获得积分0
2秒前
Angenstern完成签到 ,获得积分10
5秒前
CLTTT完成签到,获得积分0
9秒前
LiangRen完成签到 ,获得积分10
13秒前
JJJ完成签到,获得积分10
24秒前
哥哥完成签到,获得积分10
34秒前
dllnf发布了新的文献求助10
37秒前
啦啦啦完成签到 ,获得积分20
46秒前
娟娟完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
hdhuang完成签到,获得积分10
1分钟前
tcheng发布了新的文献求助10
1分钟前
dllnf完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
tcheng完成签到,获得积分10
1分钟前
佳言2009完成签到 ,获得积分10
1分钟前
一天完成签到 ,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
啊哒吸哇完成签到,获得积分10
2分钟前
2分钟前
Sunny完成签到,获得积分10
2分钟前
2分钟前
EVEN完成签到 ,获得积分0
2分钟前
木头人发布了新的文献求助20
2分钟前
三杯吐然诺完成签到 ,获得积分10
2分钟前
shacodow完成签到,获得积分10
2分钟前
小学徒完成签到 ,获得积分10
2分钟前
不劳而获完成签到 ,获得积分10
2分钟前
jiunuan完成签到,获得积分10
3分钟前
WL完成签到 ,获得积分10
3分钟前
ll完成签到,获得积分10
3分钟前
瞿人雄完成签到,获得积分10
3分钟前
没心没肺完成签到,获得积分10
3分钟前
1002SHIB完成签到,获得积分10
3分钟前
nihaolaojiu完成签到,获得积分10
3分钟前
sheetung完成签到,获得积分10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
麦田麦兜完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539095
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566735
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453020