Generative Adversarial Network-Based Framework for Accurate DTS Logging Curve Generation in Heterogeneous Reservoirs

对抗制 计算机科学 生成对抗网络 登录中 生成语法 人工智能 深度学习 生态学 生物
作者
Jing Wang,Bo Kang,Y. C. Cheng,Hehua Wang,Zhongrong Mi,Yong Xiao,Xing Zhao,Yan Feng,Jianchun Guo,Cong Da Lu
标识
DOI:10.2118/220054-ms
摘要

Abstract Accurate generation of missing share wave slowness (DTS) logging curve is significant for the precise reservoir evaluation. While various data-driven prediction models have been proposed, only a few addresses the intricate details of the DTS curve shape, and it is significant for reservoirs with strong heterogeneity. In this study, a novel DTS generation framework consisting of generator and discriminator was established based on generative adversarial network. In the generator, with the input of compressional wave slowness and compensated neutron curves, the recurrent neural network was applied to gain insight into the general pattern and generate DTS curves. In the discriminator, the convolutional neural network was adopted to compare the detailed shape and evaluate the realness of generated DTS curves. Both the generator and discriminator underwent concurrent training, aiming for model convergence and achieving a close distribution resemblance between the generated DTS curves and authentic data. The proposed DTS generation framework was practically applied in a shale gas field in the Sichuan basin of China. By segmenting the complete logging curves from over 100 wells, 47200 sequences with a length of 32 were obtained in the dataset. After 50 rounds and 26900 training cycles, the generation model exhibited robust performance with an average relative error of 0.015, and a coefficient of determination of 0.91. The frequency distribution of the generated DTS value closely resembled that of the real ones, confirming the generation ability for both overall fluctuation and local detailed shape. Moreover, a blind test on logging curves in 8 wells revealed a high shape agreement between the generated and real DTS curves, indicating the applicability of the proposed generation framework. Unlike the conventional approaches emphasizing the overall trend of DTS curves, the proposed framework introduces an additional discriminator to enhance the generation ability for intricate local details, leading to significantly improved generation performance. This study underscores the potential of advanced artificial intelligence methodologies for precious logging curve generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
可爱的函函应助王富贵啊采纳,获得10
4秒前
4秒前
行大运发布了新的文献求助10
7秒前
7秒前
帅气的马里奥完成签到 ,获得积分10
8秒前
8秒前
小比熊完成签到,获得积分10
10秒前
racill发布了新的文献求助30
10秒前
XHW发布了新的文献求助10
11秒前
沉海完成签到,获得积分20
12秒前
oh应助你吼采纳,获得10
15秒前
凌鹏煊发布了新的文献求助10
16秒前
行大运完成签到,获得积分10
17秒前
Kiki发布了新的文献求助20
17秒前
Xincheng发布了新的文献求助10
18秒前
XHW完成签到,获得积分10
19秒前
20秒前
共享精神应助Steven采纳,获得10
20秒前
别摆烂了发布了新的文献求助10
22秒前
精明的书白完成签到,获得积分10
23秒前
23秒前
前行的灿完成签到 ,获得积分10
23秒前
23秒前
柒柒球发布了新的文献求助10
24秒前
24秒前
木青仙子完成签到,获得积分10
24秒前
Liufgui应助song采纳,获得10
24秒前
我是老大应助leo采纳,获得10
25秒前
思维隋发布了新的文献求助10
26秒前
自觉妖妖发布了新的文献求助30
27秒前
27秒前
hahasun完成签到,获得积分10
28秒前
KDS发布了新的文献求助10
28秒前
28秒前
别摆烂了发布了新的文献求助10
30秒前
32秒前
骐骥完成签到,获得积分10
33秒前
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075