亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative Adversarial Network-Based Framework for Accurate DTS Logging Curve Generation in Heterogeneous Reservoirs

对抗制 计算机科学 生成对抗网络 登录中 生成语法 人工智能 深度学习 生态学 生物
作者
Jing Wang,Bo Kang,Y. C. Cheng,Hehua Wang,Zhongrong Mi,Yong Xiao,Xing Zhao,Yan Feng,Jianchun Guo,Cong Da Lu
标识
DOI:10.2118/220054-ms
摘要

Abstract Accurate generation of missing share wave slowness (DTS) logging curve is significant for the precise reservoir evaluation. While various data-driven prediction models have been proposed, only a few addresses the intricate details of the DTS curve shape, and it is significant for reservoirs with strong heterogeneity. In this study, a novel DTS generation framework consisting of generator and discriminator was established based on generative adversarial network. In the generator, with the input of compressional wave slowness and compensated neutron curves, the recurrent neural network was applied to gain insight into the general pattern and generate DTS curves. In the discriminator, the convolutional neural network was adopted to compare the detailed shape and evaluate the realness of generated DTS curves. Both the generator and discriminator underwent concurrent training, aiming for model convergence and achieving a close distribution resemblance between the generated DTS curves and authentic data. The proposed DTS generation framework was practically applied in a shale gas field in the Sichuan basin of China. By segmenting the complete logging curves from over 100 wells, 47200 sequences with a length of 32 were obtained in the dataset. After 50 rounds and 26900 training cycles, the generation model exhibited robust performance with an average relative error of 0.015, and a coefficient of determination of 0.91. The frequency distribution of the generated DTS value closely resembled that of the real ones, confirming the generation ability for both overall fluctuation and local detailed shape. Moreover, a blind test on logging curves in 8 wells revealed a high shape agreement between the generated and real DTS curves, indicating the applicability of the proposed generation framework. Unlike the conventional approaches emphasizing the overall trend of DTS curves, the proposed framework introduces an additional discriminator to enhance the generation ability for intricate local details, leading to significantly improved generation performance. This study underscores the potential of advanced artificial intelligence methodologies for precious logging curve generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢123完成签到 ,获得积分10
4秒前
tong完成签到 ,获得积分10
18秒前
醉熏的姿完成签到 ,获得积分10
28秒前
29秒前
冷艳水壶完成签到 ,获得积分10
33秒前
应椋发布了新的文献求助10
34秒前
吃了吃了完成签到,获得积分10
35秒前
Joeswith完成签到,获得积分10
35秒前
Akim应助诚心冥幽采纳,获得30
35秒前
40秒前
张先生完成签到 ,获得积分10
41秒前
Rr完成签到,获得积分10
1分钟前
1分钟前
1分钟前
无私双双发布了新的文献求助10
1分钟前
zkkz完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
jinyue完成签到,获得积分10
2分钟前
无私双双发布了新的文献求助10
2分钟前
2分钟前
精明凡双完成签到,获得积分10
2分钟前
2分钟前
小丸子完成签到,获得积分10
2分钟前
2分钟前
Able发布了新的文献求助10
2分钟前
欢呼的世立完成签到 ,获得积分10
2分钟前
2分钟前
Able完成签到,获得积分10
3分钟前
小橙子完成签到 ,获得积分10
3分钟前
3分钟前
兔兔兔应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
zhx0411发布了新的文献求助10
3分钟前
3分钟前
深情安青应助小宇子采纳,获得10
4分钟前
4分钟前
4分钟前
mumu发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540230
求助须知:如何正确求助?哪些是违规求助? 3974252
关于积分的说明 12310209
捐赠科研通 3641228
什么是DOI,文献DOI怎么找? 2005077
邀请新用户注册赠送积分活动 1040470
科研通“疑难数据库(出版商)”最低求助积分说明 929672