Generative Adversarial Network-Based Framework for Accurate DTS Logging Curve Generation in Heterogeneous Reservoirs

对抗制 计算机科学 生成对抗网络 登录中 生成语法 人工智能 深度学习 生态学 生物
作者
Jing Wang,Bo Kang,Y. C. Cheng,Hehua Wang,Zhongrong Mi,Yong Xiao,Xing Zhao,Yan Feng,Jianchun Guo,Cong Da Lu
标识
DOI:10.2118/220054-ms
摘要

Abstract Accurate generation of missing share wave slowness (DTS) logging curve is significant for the precise reservoir evaluation. While various data-driven prediction models have been proposed, only a few addresses the intricate details of the DTS curve shape, and it is significant for reservoirs with strong heterogeneity. In this study, a novel DTS generation framework consisting of generator and discriminator was established based on generative adversarial network. In the generator, with the input of compressional wave slowness and compensated neutron curves, the recurrent neural network was applied to gain insight into the general pattern and generate DTS curves. In the discriminator, the convolutional neural network was adopted to compare the detailed shape and evaluate the realness of generated DTS curves. Both the generator and discriminator underwent concurrent training, aiming for model convergence and achieving a close distribution resemblance between the generated DTS curves and authentic data. The proposed DTS generation framework was practically applied in a shale gas field in the Sichuan basin of China. By segmenting the complete logging curves from over 100 wells, 47200 sequences with a length of 32 were obtained in the dataset. After 50 rounds and 26900 training cycles, the generation model exhibited robust performance with an average relative error of 0.015, and a coefficient of determination of 0.91. The frequency distribution of the generated DTS value closely resembled that of the real ones, confirming the generation ability for both overall fluctuation and local detailed shape. Moreover, a blind test on logging curves in 8 wells revealed a high shape agreement between the generated and real DTS curves, indicating the applicability of the proposed generation framework. Unlike the conventional approaches emphasizing the overall trend of DTS curves, the proposed framework introduces an additional discriminator to enhance the generation ability for intricate local details, leading to significantly improved generation performance. This study underscores the potential of advanced artificial intelligence methodologies for precious logging curve generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远方发布了新的文献求助30
1秒前
生椰拿铁完成签到 ,获得积分10
2秒前
脑洞疼应助nenoaowu采纳,获得10
3秒前
乌滴子发布了新的文献求助10
4秒前
5秒前
今后应助YGYANG采纳,获得10
6秒前
小马甲应助终梦采纳,获得10
7秒前
薛佳琦发布了新的文献求助10
9秒前
Zac完成签到,获得积分10
9秒前
HP完成签到,获得积分10
10秒前
13秒前
bkagyin应助wgl200212采纳,获得10
16秒前
星辰大海应助333333采纳,获得10
17秒前
18秒前
叶子宁完成签到,获得积分10
18秒前
科研通AI6应助flysky120采纳,获得10
19秒前
乌滴子完成签到,获得积分10
19秒前
jos发布了新的文献求助10
20秒前
bei完成签到,获得积分10
20秒前
终梦发布了新的文献求助10
22秒前
22秒前
month完成签到,获得积分10
24秒前
24秒前
xiaosu完成签到,获得积分10
24秒前
华仔应助胡星海采纳,获得10
26秒前
单薄冰安完成签到,获得积分10
27秒前
28秒前
kmzzy完成签到 ,获得积分10
29秒前
微垣发布了新的文献求助10
29秒前
苹果新蕾完成签到,获得积分10
30秒前
Johnson完成签到 ,获得积分10
31秒前
任寒松发布了新的文献求助10
32秒前
33秒前
微垣完成签到,获得积分10
35秒前
big壮完成签到 ,获得积分10
36秒前
完美晓瑶发布了新的文献求助10
36秒前
37秒前
南汐完成签到,获得积分10
38秒前
夏天呀完成签到,获得积分10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288622
求助须知:如何正确求助?哪些是违规求助? 4440454
关于积分的说明 13824620
捐赠科研通 4322732
什么是DOI,文献DOI怎么找? 2372708
邀请新用户注册赠送积分活动 1368140
关于科研通互助平台的介绍 1332034