清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generative Adversarial Network-Based Framework for Accurate DTS Logging Curve Generation in Heterogeneous Reservoirs

对抗制 计算机科学 生成对抗网络 登录中 生成语法 人工智能 深度学习 生态学 生物
作者
Jing Wang,Bo Kang,Y. C. Cheng,Hehua Wang,Zhongrong Mi,Yong Xiao,Xing Zhao,Yan Feng,Jianchun Guo,Cong Da Lu
标识
DOI:10.2118/220054-ms
摘要

Abstract Accurate generation of missing share wave slowness (DTS) logging curve is significant for the precise reservoir evaluation. While various data-driven prediction models have been proposed, only a few addresses the intricate details of the DTS curve shape, and it is significant for reservoirs with strong heterogeneity. In this study, a novel DTS generation framework consisting of generator and discriminator was established based on generative adversarial network. In the generator, with the input of compressional wave slowness and compensated neutron curves, the recurrent neural network was applied to gain insight into the general pattern and generate DTS curves. In the discriminator, the convolutional neural network was adopted to compare the detailed shape and evaluate the realness of generated DTS curves. Both the generator and discriminator underwent concurrent training, aiming for model convergence and achieving a close distribution resemblance between the generated DTS curves and authentic data. The proposed DTS generation framework was practically applied in a shale gas field in the Sichuan basin of China. By segmenting the complete logging curves from over 100 wells, 47200 sequences with a length of 32 were obtained in the dataset. After 50 rounds and 26900 training cycles, the generation model exhibited robust performance with an average relative error of 0.015, and a coefficient of determination of 0.91. The frequency distribution of the generated DTS value closely resembled that of the real ones, confirming the generation ability for both overall fluctuation and local detailed shape. Moreover, a blind test on logging curves in 8 wells revealed a high shape agreement between the generated and real DTS curves, indicating the applicability of the proposed generation framework. Unlike the conventional approaches emphasizing the overall trend of DTS curves, the proposed framework introduces an additional discriminator to enhance the generation ability for intricate local details, leading to significantly improved generation performance. This study underscores the potential of advanced artificial intelligence methodologies for precious logging curve generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的谷梦完成签到 ,获得积分10
45秒前
范白容完成签到 ,获得积分10
1分钟前
肆肆完成签到,获得积分10
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
JueruiWang1258完成签到,获得积分10
2分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
tingyeh完成签到,获得积分10
3分钟前
甜甜玫瑰应助baolong采纳,获得10
4分钟前
丹妮完成签到 ,获得积分10
4分钟前
liuzhigang完成签到 ,获得积分10
4分钟前
有人应助科研通管家采纳,获得10
5分钟前
有人应助科研通管家采纳,获得10
5分钟前
有人应助科研通管家采纳,获得10
5分钟前
有人应助科研通管家采纳,获得10
5分钟前
有人应助科研通管家采纳,获得10
5分钟前
baolong完成签到,获得积分10
5分钟前
jeff发布了新的文献求助30
6分钟前
姚老表完成签到,获得积分10
6分钟前
爆米花应助hani采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得30
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
thangxtz完成签到,获得积分10
8分钟前
李健应助zhangyimg采纳,获得10
8分钟前
云木完成签到 ,获得积分10
8分钟前
方白秋完成签到,获得积分10
8分钟前
yangquanquan完成签到,获得积分10
8分钟前
8分钟前
zhangyimg发布了新的文献求助10
8分钟前
merrylake完成签到 ,获得积分10
9分钟前
仿真小学生完成签到,获得积分10
9分钟前
有人应助科研通管家采纳,获得10
9分钟前
有人应助科研通管家采纳,获得30
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826669
捐赠科研通 2454589
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527