布鲁氏菌
表位
病毒学
生物
微生物学
细菌性疾病
抗原
化学
布鲁氏菌
布鲁氏菌病
免疫学
作者
Somayyeh Rahimnahal,Shahnaz Yousefizadeh,Yahya Mohammadi
标识
DOI:10.1080/07391102.2023.2188962
摘要
Brucellosis is a zoonotic caused by the Brucella which is a well-known infectious disease agent in domestic animals and if transmitted, it can cause infection in humans. Because brucellosis is contagious, its control depends on the eradication of the animal disease in farms. There are two vaccines based on the killed and/or weakened bacteria against B. melitensis and B. abortus, but no recombinant vaccine is available for preventing the disease. The present study was designed to develop a multi-epitope vaccine against of B. melitensis and B. abortus using virB10, Omp31 and Omp16 antigens by the prediction of T lymphocytes, T cell cytotoxicity and IFN-γ epitopes. 50S L7/L12 Ribosomal protein from Mycobacterium tuberculosis was used as a bovine TLR4 and TLR9 agonist. GPGPG, AAY and KK linkers were used as a linker. Brucella construct was well-integrated in the pET-32a Shuttle vector with BamHI and HindIII restriction enzymes. The final construct contained 769 amino acids, that it was soluble protein of about ∼82 kDa after expression in the Escherichia coli SHuffle host. Modeled protein analysis based on the tertiary structure validation, molecular docking studies, molecular dynamics simulations results like RMSD, Gyration and RMSF as well as MM/PBSA analysis showed that this protein has a stable construct and is capable being in interaction with bovine TLR4 and TLR9. Analysis of the data obtained suggests that the proposed vaccine can induce the immune response by stimulating T- and B-cells, and may be used for prevention and remedial purposes, against B. melitensis and B. abortus.Communicated by Ramaswamy H. Sarma.
科研通智能强力驱动
Strongly Powered by AbleSci AI