Hybrid short-term load forecasting using CGAN with CNN and semi-supervised regression

鉴别器 人工智能 计算机科学 发电机(电路理论) 模式识别(心理学) 人工神经网络 期限(时间) 卷积神经网络 机器学习 功率(物理) 量子力学 电信 探测器 物理
作者
Xiangya Bu,Qiuwei Wu,Bin Zhou,Canbing Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:338: 120920-120920 被引量:33
标识
DOI:10.1016/j.apenergy.2023.120920
摘要

Accurate short-term load forecasting (STLF) is essential to improve secure and economic operation of power systems. In this paper, a hybrid STLF model using the conditional generative adversarial network (CGAN) with convolutional neural network (CNN) and semi-supervised regression is proposed to improve the accuracy of STLF. Firstly, a conditional label matrix with relevant factors is constructed as the conditional labels of CGAN. The grey weighted correlation method is applied to generate high-quality similar days as one of the labels. The input data with conditional labels and load time series are decomposed into several sub-modes by the variational mode decomposition (VMD), which transforms the load forecasting into several sub-forecasting. Then, the CGAN generator is to capture the internal feature of each mode with the CNN and generate fake samples, while the CGAN discriminator is modified with a semi-supervised regression layer to extract the nonlinear and dynamic behaviors of the dataset and perform precise STLF. The final forecasting results are obtained by aggregating the results of all sub-mode. The generator and discriminator of the CGAN form a min–max game to improve the sample generation ability and reduce forecasting errors. The simulation results show that the STLF accuracy with the proposed model is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jialiu完成签到,获得积分10
刚刚
刚刚
完美世界应助沐晴采纳,获得10
刚刚
NexusExplorer应助杨宇彤采纳,获得10
刚刚
刚刚
zs发布了新的文献求助10
1秒前
1秒前
彭于彦祖应助坦率的匪采纳,获得50
3秒前
妖风完成签到,获得积分10
3秒前
limh完成签到,获得积分10
3秒前
4秒前
123完成签到,获得积分10
5秒前
6秒前
xxxxx完成签到,获得积分10
7秒前
abc关闭了abc文献求助
7秒前
完美世界应助科研通管家采纳,获得30
9秒前
852应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
菠萝炒饭应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
穆仰应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
xzn1123应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
11秒前
晨曦发布了新的文献求助10
11秒前
晨曦完成签到,获得积分20
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
11秒前
chelo发布了新的文献求助10
11秒前
spz150完成签到,获得积分10
11秒前
火星上凌瑶完成签到,获得积分10
12秒前
时尚书白完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707