Automated segmentation of palpebral fissures from eye videography using a texture fusion neural network

录像 人工智能 计算机科学 雅卡索引 分割 卷积神经网络 计算机视觉 模式识别(心理学) 广告 业务
作者
Qinxiang Zheng,Zhongwen Li,Juan Zhang,Chenyang Mei,Guangyu Li,Lei Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104820-104820 被引量:4
标识
DOI:10.1016/j.bspc.2023.104820
摘要

Automated segmentation of palpebral fissures depicted on images of eye videography plays a crucial role in identifying blinks (especially incomplete blinks) and detecting some eye disorders (e.g., dry or tired eyes). To this end, we propose a texture fusion segmentation network (called TF-Net) on the basis of the popular U-Net for automatically segmenting palpebral fissures from eye videography. The proposed network is constructed by defining two novel subtraction convolutional blocks and introducing them into the U-Net. These subtraction blocks are able to suppress motion artifacts and complex background in some degrees and enhance the sensitivity of the proposed network to objects of interest, as compared to the U-Net. Extensive experiments on our collected blink images from eye videography and three public datasets demonstrated that the proposed network obtained, on average, the Dice score (DS), Jaccard similarity (JS), and Hausdorff distance (HD) of 0.9445, 0.9099, and 5.3657, respectively, on the blink image dataset, and 0.8364, 0.7434, and 4.5745 for 14 objects of interest on three public datasets, which surpassed the U-Net and its multiple variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助He采纳,获得30
3秒前
Dean应助大聪明采纳,获得25
5秒前
6秒前
ding应助looking采纳,获得10
6秒前
lubaohong发布了新的文献求助10
6秒前
7秒前
852应助yayaha采纳,获得10
8秒前
852应助aixiaoming0503采纳,获得10
8秒前
9秒前
9秒前
机密塔发布了新的文献求助10
10秒前
含着朵白云完成签到 ,获得积分10
10秒前
慕青应助易玟采纳,获得10
10秒前
12秒前
YH发布了新的文献求助10
13秒前
hxxcyb完成签到,获得积分10
14秒前
等等完成签到,获得积分10
15秒前
weilei完成签到,获得积分0
16秒前
uracil97完成签到,获得积分10
17秒前
17秒前
qq完成签到,获得积分20
18秒前
18秒前
希望天下0贩的0应助嘟嘟采纳,获得10
19秒前
judy完成签到,获得积分10
19秒前
FashionBoy应助无聊的难敌采纳,获得10
19秒前
JJP发布了新的文献求助10
19秒前
19秒前
李健的小迷弟应助777采纳,获得10
19秒前
生椰拿铁完成签到 ,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
王文王完成签到,获得积分10
22秒前
等等发布了新的文献求助10
22秒前
YH完成签到,获得积分20
22秒前
allyceacheng完成签到,获得积分20
23秒前
rrrrrrry给rrrrrrry的求助进行了留言
24秒前
25秒前
希望天下0贩的0应助shi hui采纳,获得10
25秒前
allyceacheng发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475655
求助须知:如何正确求助?哪些是违规求助? 4577327
关于积分的说明 14361496
捐赠科研通 4505243
什么是DOI,文献DOI怎么找? 2468525
邀请新用户注册赠送积分活动 1456156
关于科研通互助平台的介绍 1429890