Effective three-dimensional thermal conductivity networks in polystyrene/multi-walled carbon nanotubes/aluminum oxide@hexagonal boron nitride composites based on synergistic effects and isolated structures

材料科学 热导率 复合材料 氮化硼 碳纳米管 聚苯乙烯 电导率 热压 复合数 聚合物 化学 物理化学
作者
Zhengfang Wang,Zijian Wu,Najla AlMasoud,Ling Weng,Taghrid S. Alomar,Zeinhom M. El‐Bahy,Mingpeng He,Changjie Yang,Mingqi Sun,Priyanka Wasnik,Handong Li,Hassan Algadi,Sri Hari Kumar Annamareddy,Deepak Sridhar
出处
期刊:Advanced composites and hybrid materials [Springer Science+Business Media]
卷期号:6 (3) 被引量:40
标识
DOI:10.1007/s42114-023-00702-8
摘要

Enhancing the thermal conductivity (λ) of composites by establishing an effective thermally conductive path is the key to prepare thermally conductive composites. In this study, a new preparation method was used to achieve high λ of composites with low filler contents. Firstly, multi-walled carbon nanotubes (MWCNT) and alumina (Al2O3) established a synergistic thermal conductivity network in the polystyrene particles, and subsequently, the hexagonal boron nitride (h-BN) filler wrapped in the outer layer of the composite particles constructed a continuous h-BN thermal conductivity network during the hot-pressing process. The three-dimensional thermal conductivity network supported by the two thermal conductivity networks provided more pathways for heat transfer in the composite, thus significantly improving its λ. The λ of the composites increased to 3.36 W/mK for MWCNT content of 0.5 wt%, Al2O3 content of 0.5 wt%, and h-BN content of 30 wt%. The composite also has good insulating properties, with a conductivity value of only 3.21 × 10−9 S/cm at an h-BN content of 30 wt% and MWCNT content of 0.5 wt%. This results from the presence of a h-BN insulation layer on the outside of the composite sphere and the presence of Al2O3 in the synergistic network that blocks the electron transport inside the material, thus maintaining its good insulating properties. Therefore, the composite prepared in this paper has the potential to be used in the field of electronic packaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jianzhi完成签到,获得积分10
刚刚
飘逸的天空完成签到,获得积分10
1秒前
han关注了科研通微信公众号
1秒前
wkjfh完成签到,获得积分0
1秒前
1秒前
bhappy21完成签到,获得积分10
2秒前
2秒前
2秒前
Cat发布了新的文献求助10
4秒前
5秒前
汉堡包应助dio采纳,获得10
5秒前
雪白沛文完成签到,获得积分10
6秒前
bhappy21发布了新的文献求助10
7秒前
7秒前
7秒前
weiyi发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
weywe完成签到,获得积分10
9秒前
Jasper应助往往超可爱采纳,获得10
9秒前
12138发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
102755完成签到,获得积分10
10秒前
10秒前
liua发布了新的文献求助10
11秒前
可爱的函函应助ll采纳,获得10
12秒前
清1031发布了新的文献求助10
12秒前
12秒前
FashionBoy应助苗条菠萝采纳,获得20
13秒前
13秒前
善学以致用应助哦豁采纳,获得10
14秒前
SYLH应助hh1818178采纳,获得10
14秒前
明理楷瑞发布了新的文献求助10
14秒前
晚风发布了新的文献求助10
15秒前
15秒前
SEM小菜鸡完成签到,获得积分10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735334
求助须知:如何正确求助?哪些是违规求助? 3279318
关于积分的说明 10014051
捐赠科研通 2995959
什么是DOI,文献DOI怎么找? 1643767
邀请新用户注册赠送积分活动 781440
科研通“疑难数据库(出版商)”最低求助积分说明 749398