An interpretable machine learning model for real-time sepsis prediction based on basic physiological indicators.

可解释性 人工智能 接收机工作特性 特征(语言学) 预警得分 计算机科学 预测建模 机器学习 败血症 呼吸频率 血压 医学 数据挖掘 心率 急诊医学 内科学 哲学 语言学
作者
Tiegang Zhang,Mingjun Zhong,Yixin Cheng,M. Zhang
出处
期刊:PubMed 卷期号:27 (10): 4348-4356 被引量:3
标识
DOI:10.26355/eurrev_202305_32439
摘要

In view of the important role of risk prediction models in the clinical diagnosis and treatment of sepsis, and the limitations of existing models in terms of timeliness and interpretability, we intend to develop a real-time prediction model of sepsis with high timeliness and clinical interpretability.We used eight real-time basic physiological monitoring indicators of patients, including heart rate, respiratory rate, oxygen saturation, mean arterial pressure, systolic blood pressure, diastolic blood pressure, temperature and blood glucose, extracted three-hour dynamic feature sequences, and calculated 3 linear parameters (mean, standard deviation, and endpoint value), a 24-dimensional feature vector was constructed, and finally a real-time sepsis prediction model was constructed based on the Local Interpretable Model-Agnostic Explanation (LIME) interpretability method.The area under the receiver operating characteristic curve (AUROC), Accuracy and F1 scores of Extremely Randomized Trees we built were higher than those of other models, with AUROC above 0.76, showing the best performance. The Imbalance XGBoost has a high specificity (0.86) in predicting sepsis. The LIME local interpretable model we built can display a large amount of valid model prediction details for clinical workers' reference, including the prediction probability and the influence of each feature on the prediction result, thus effectively assisting the work of clinical workers and improving diagnostic efficiency.This model can provide real-time dynamic early warning of sepsis for critically ill patients under supervision and provide a reference for clinical decision support. At the same time, interpretive analysis of sepsis prediction models can improve the credibility of the models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
富贵发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
亓亓完成签到 ,获得积分20
3秒前
6秒前
7秒前
汉堡包应助钫人采纳,获得10
7秒前
热情爆米花完成签到 ,获得积分10
9秒前
深情安青应助韩腾博采纳,获得10
9秒前
10秒前
Bean发布了新的文献求助10
10秒前
天天快乐应助辉仔采纳,获得10
12秒前
14秒前
15秒前
15秒前
MAD666完成签到,获得积分10
15秒前
16秒前
17秒前
lina发布了新的文献求助10
18秒前
18秒前
爆米花应助yvonnecao采纳,获得10
18秒前
1122846发布了新的文献求助10
19秒前
附子完成签到,获得积分10
19秒前
Jasper应助Silverexile采纳,获得10
20秒前
哦哦完成签到 ,获得积分10
20秒前
归尘发布了新的文献求助10
21秒前
峥嵘发布了新的文献求助10
22秒前
钫人发布了新的文献求助10
24秒前
皮卡丘完成签到 ,获得积分0
27秒前
29秒前
天天快乐应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
sh应助科研通管家采纳,获得10
30秒前
顾矜应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
Ava应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得10
30秒前
充电宝应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431754
求助须知:如何正确求助?哪些是违规求助? 4544599
关于积分的说明 14193134
捐赠科研通 4463678
什么是DOI,文献DOI怎么找? 2446845
邀请新用户注册赠送积分活动 1438154
关于科研通互助平台的介绍 1414878