奥拉帕尼
PARP抑制剂
DNA损伤
癌症研究
端粒酶
DNA修复
聚ADP核糖聚合酶
A549电池
细胞凋亡
生物
聚合酶
DNA
生物化学
基因
作者
Payel Dey,Soumyajit Biswas,Rajarshi Das,Sandipan Chatterjee,Utpal Ghosh
标识
DOI:10.1016/j.bbrc.2023.05.116
摘要
The Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib gives promising results against various types of cancers in clinical trials. The combination of drugs always increases therapeutic efficacy because of targeting multiple pathways of cancer progression. Our objective was to explore the potential synergistic anticancer activities of olaparib combined with p38 MAPK inhibitor (MAPKi) SB203580 on non-small cell lung carcinoma (NSCLC) A549 cells. The effects of the individual compound and their combination on cell survival, DNA damage as detected by γH2AX foci, expression of key proteins in Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ) repair, caspase 3 activation, nuclear fragmentation and telomerase regulation were studied in A549 cells. The results showed that olaparib and SB203580 individually reduced cell viability in a dose-dependent manner but combined treatment synergistically reduced cell viability. Olaparib combined with SB203580 significantly reduced error-free HR repair via reducing MRE11-RAD50 and promoted error-prone NHEJ repair by increasing Ku70-Ku80 leading to increased DNA damage-induced apoptosis. Notably, the alteration of proteins in HR/NHEJ pathways, DNA damage and induction of apoptosis was significant by combined treatment but not by 1 μM olaparib treatment alone. In addition, combined treatment reduced telomerase activity more than single treatment via reducing telomerase subunits. These data implicated that the anticancer potential of olaparib was significantly increased by combining SB203580 through increasing DNA damage-induced apoptosis and inhibiting telomerase activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI