Prediction of MYCN Gene Amplification in Pediatric Neuroblastomas: Development of a Deep Learning–Based Tool for Automatic Tumor Segmentation and Comparative Analysis of Computed Tomography–Based Radiomics Features Harmonization

人工智能 特征选择 分割 计算机科学 接收机工作特性 随机森林 无线电技术 医学 机器学习 模式识别(心理学)
作者
Ling Yun Yeow,Yu Xuan Teh,Xinyu Lu,Arvind Channarayapatna Srinivasa,Eelin Tan,Timothy Shao Ern Tan,Phua Hwee Tang,Bhanu Prakash
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (5): 786-795 被引量:4
标识
DOI:10.1097/rct.0000000000001480
摘要

MYCN oncogene amplification is closely linked to high-grade neuroblastoma with poor prognosis. Accurate quantification is essential for risk assessment, which guides clinical decision making and disease management. This study proposes an end-to-end deep-learning framework for automatic tumor segmentation of pediatric neuroblastomas and radiomics features-based classification of MYCN gene amplification.Data from pretreatment contrast-enhanced computed tomography scans and MYCN status from 47 cases of pediatric neuroblastomas treated at a tertiary children's hospital from 2009 to 2020 were reviewed. Automated tumor segmentation and grading pipeline includes (1) a modified U-Net for tumor segmentation; (2) extraction of radiomic textural features; (3) feature-based ComBat harmonization for removal of variabilities across scanners; (4) feature selection using 2 approaches, namely, ( a ) an ensemble approach and ( b ) stepwise forward-and-backward selection method using logistic regression classifier; and (5) radiomics features-based classification of MYCN gene amplification using machine learning classifiers.Median train/test Dice score for modified U-Net was 0.728/0.680. The top 3 features from the ensemble approach were neighborhood gray-tone difference matrix (NGTDM) busyness, NGTDM strength, and gray-level run-length matrix (GLRLM) low gray-level run emphasis, whereas those from the stepwise approach were GLRLM low gray-level run emphasis, GLRLM high gray-level run emphasis, and NGTDM coarseness. The top-performing tumor classification algorithm achieved a weighted F1 score of 97%, an area under the receiver operating characteristic curve of 96.9%, an accuracy of 96.97%, and a negative predictive value of 100%. Harmonization-based tumor classification improved the accuracy by 2% to 3% for all classifiers.The proposed end-to-end framework achieved high accuracy for MYCN gene amplification status classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jimmyyyyyy发布了新的文献求助10
1秒前
旭东静静发布了新的文献求助10
2秒前
菓小柒完成签到 ,获得积分10
2秒前
3秒前
gu完成签到,获得积分20
3秒前
Ryan发布了新的文献求助10
3秒前
4秒前
天天快乐应助苦涩油麦菜采纳,获得10
4秒前
薯片发布了新的文献求助10
5秒前
5秒前
6秒前
小蘑菇应助啾啾采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
研友_Z30Kz8完成签到,获得积分10
7秒前
旭东静静完成签到,获得积分10
7秒前
7秒前
健忘的网络应助HJJHJH采纳,获得10
7秒前
yjq0103完成签到,获得积分10
7秒前
znn发布了新的文献求助10
7秒前
充电宝应助Shens采纳,获得10
7秒前
HE完成签到,获得积分10
8秒前
sinlar发布了新的文献求助10
9秒前
9秒前
魔幻的雁发布了新的文献求助10
10秒前
谦让的靖巧完成签到,获得积分10
10秒前
田様应助Chunlan采纳,获得30
11秒前
阿珊完成签到,获得积分10
12秒前
12秒前
Zhao0112发布了新的文献求助10
12秒前
牛马发布了新的文献求助10
12秒前
妍好123应助EnJay0528采纳,获得10
13秒前
xide完成签到,获得积分10
13秒前
科研通AI6.1应助悦耳从筠采纳,获得10
14秒前
14秒前
WXR完成签到,获得积分10
14秒前
14秒前
黑咖喱完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
buer完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026