Prediction of MYCN Gene Amplification in Pediatric Neuroblastomas: Development of a Deep Learning–Based Tool for Automatic Tumor Segmentation and Comparative Analysis of Computed Tomography–Based Radiomics Features Harmonization

人工智能 特征选择 分割 计算机科学 接收机工作特性 随机森林 无线电技术 医学 机器学习 模式识别(心理学)
作者
Ling Yun Yeow,Yu Xuan Teh,Xinyu Lu,Arvind Channarayapatna Srinivasa,Eelin Tan,Timothy Shao Ern Tan,Phua Hwee Tang,Bhanu Prakash
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (5): 786-795 被引量:4
标识
DOI:10.1097/rct.0000000000001480
摘要

MYCN oncogene amplification is closely linked to high-grade neuroblastoma with poor prognosis. Accurate quantification is essential for risk assessment, which guides clinical decision making and disease management. This study proposes an end-to-end deep-learning framework for automatic tumor segmentation of pediatric neuroblastomas and radiomics features-based classification of MYCN gene amplification.Data from pretreatment contrast-enhanced computed tomography scans and MYCN status from 47 cases of pediatric neuroblastomas treated at a tertiary children's hospital from 2009 to 2020 were reviewed. Automated tumor segmentation and grading pipeline includes (1) a modified U-Net for tumor segmentation; (2) extraction of radiomic textural features; (3) feature-based ComBat harmonization for removal of variabilities across scanners; (4) feature selection using 2 approaches, namely, ( a ) an ensemble approach and ( b ) stepwise forward-and-backward selection method using logistic regression classifier; and (5) radiomics features-based classification of MYCN gene amplification using machine learning classifiers.Median train/test Dice score for modified U-Net was 0.728/0.680. The top 3 features from the ensemble approach were neighborhood gray-tone difference matrix (NGTDM) busyness, NGTDM strength, and gray-level run-length matrix (GLRLM) low gray-level run emphasis, whereas those from the stepwise approach were GLRLM low gray-level run emphasis, GLRLM high gray-level run emphasis, and NGTDM coarseness. The top-performing tumor classification algorithm achieved a weighted F1 score of 97%, an area under the receiver operating characteristic curve of 96.9%, an accuracy of 96.97%, and a negative predictive value of 100%. Harmonization-based tumor classification improved the accuracy by 2% to 3% for all classifiers.The proposed end-to-end framework achieved high accuracy for MYCN gene amplification status classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
神的女人发布了新的文献求助10
刚刚
pcr163应助科研通管家采纳,获得30
刚刚
Liufgui应助科研通管家采纳,获得20
刚刚
褪黑素应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
SYLH应助科研通管家采纳,获得20
刚刚
MchemG应助Qianyun采纳,获得30
2秒前
2秒前
2秒前
2秒前
Knight-1124发布了新的文献求助10
2秒前
2秒前
华仔应助徐智秀采纳,获得10
2秒前
2秒前
旺旺旺完成签到,获得积分20
3秒前
4秒前
和谐一万发布了新的文献求助10
5秒前
可口可乐发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
程之杭完成签到,获得积分10
7秒前
战战发布了新的文献求助10
7秒前
zengwr发布了新的文献求助10
9秒前
科研助手6应助神的女人采纳,获得10
10秒前
呼呼啦呼啦完成签到,获得积分10
11秒前
11秒前
Jasper应助sylnd126采纳,获得10
11秒前
哈哈发布了新的文献求助20
13秒前
Anita完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021