Prediction of MYCN Gene Amplification in Pediatric Neuroblastomas: Development of a Deep Learning–Based Tool for Automatic Tumor Segmentation and Comparative Analysis of Computed Tomography–Based Radiomics Features Harmonization

人工智能 特征选择 分割 计算机科学 接收机工作特性 随机森林 无线电技术 医学 机器学习 模式识别(心理学)
作者
Ling Yun Yeow,Yu Xuan Teh,Xinyu Lu,Arvind Channarayapatna Srinivasa,Eelin Tan,Timothy Shao Ern Tan,Phua Hwee Tang,Bhanu Prakash
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (5): 786-795 被引量:4
标识
DOI:10.1097/rct.0000000000001480
摘要

MYCN oncogene amplification is closely linked to high-grade neuroblastoma with poor prognosis. Accurate quantification is essential for risk assessment, which guides clinical decision making and disease management. This study proposes an end-to-end deep-learning framework for automatic tumor segmentation of pediatric neuroblastomas and radiomics features-based classification of MYCN gene amplification.Data from pretreatment contrast-enhanced computed tomography scans and MYCN status from 47 cases of pediatric neuroblastomas treated at a tertiary children's hospital from 2009 to 2020 were reviewed. Automated tumor segmentation and grading pipeline includes (1) a modified U-Net for tumor segmentation; (2) extraction of radiomic textural features; (3) feature-based ComBat harmonization for removal of variabilities across scanners; (4) feature selection using 2 approaches, namely, ( a ) an ensemble approach and ( b ) stepwise forward-and-backward selection method using logistic regression classifier; and (5) radiomics features-based classification of MYCN gene amplification using machine learning classifiers.Median train/test Dice score for modified U-Net was 0.728/0.680. The top 3 features from the ensemble approach were neighborhood gray-tone difference matrix (NGTDM) busyness, NGTDM strength, and gray-level run-length matrix (GLRLM) low gray-level run emphasis, whereas those from the stepwise approach were GLRLM low gray-level run emphasis, GLRLM high gray-level run emphasis, and NGTDM coarseness. The top-performing tumor classification algorithm achieved a weighted F1 score of 97%, an area under the receiver operating characteristic curve of 96.9%, an accuracy of 96.97%, and a negative predictive value of 100%. Harmonization-based tumor classification improved the accuracy by 2% to 3% for all classifiers.The proposed end-to-end framework achieved high accuracy for MYCN gene amplification status classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FQma123发布了新的文献求助10
1秒前
1秒前
洋洋完成签到,获得积分20
1秒前
汉堡包应助yg采纳,获得10
1秒前
Mei关注了科研通微信公众号
2秒前
hhhh111完成签到,获得积分10
3秒前
卡比兽完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
亿万斯年应助芝士牛堡采纳,获得10
5秒前
5秒前
可爱的函函应助wu采纳,获得10
5秒前
文献完成签到 ,获得积分10
5秒前
6秒前
卡比兽发布了新的文献求助10
6秒前
王治清完成签到 ,获得积分10
6秒前
lulu发布了新的文献求助10
6秒前
Icebear完成签到,获得积分10
7秒前
薛妖怪完成签到,获得积分10
7秒前
王晨旭发布了新的文献求助10
8秒前
CodeCraft应助可靠的马里奥采纳,获得10
8秒前
8秒前
9秒前
NexusExplorer应助jiangzong采纳,获得10
10秒前
10秒前
坚强听兰发布了新的文献求助20
11秒前
dongfang发布了新的文献求助30
11秒前
64658应助冷冷采纳,获得10
12秒前
Icebear发布了新的文献求助10
12秒前
12秒前
Ll完成签到 ,获得积分10
13秒前
13秒前
13秒前
Karina发布了新的文献求助10
13秒前
14秒前
yg发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921870
求助须知:如何正确求助?哪些是违规求助? 4192846
关于积分的说明 13023419
捐赠科研通 3964423
什么是DOI,文献DOI怎么找? 2172981
邀请新用户注册赠送积分活动 1190624
关于科研通互助平台的介绍 1099807