Prediction of MYCN Gene Amplification in Pediatric Neuroblastomas: Development of a Deep Learning–Based Tool for Automatic Tumor Segmentation and Comparative Analysis of Computed Tomography–Based Radiomics Features Harmonization

人工智能 特征选择 分割 计算机科学 接收机工作特性 随机森林 无线电技术 医学 机器学习 模式识别(心理学)
作者
Ling Yun Yeow,Yu Xuan Teh,Xinyu Lu,Arvind Channarayapatna Srinivasa,Eelin Tan,Timothy Shao Ern Tan,Phua Hwee Tang,Bhanu Prakash
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (5): 786-795 被引量:4
标识
DOI:10.1097/rct.0000000000001480
摘要

MYCN oncogene amplification is closely linked to high-grade neuroblastoma with poor prognosis. Accurate quantification is essential for risk assessment, which guides clinical decision making and disease management. This study proposes an end-to-end deep-learning framework for automatic tumor segmentation of pediatric neuroblastomas and radiomics features-based classification of MYCN gene amplification.Data from pretreatment contrast-enhanced computed tomography scans and MYCN status from 47 cases of pediatric neuroblastomas treated at a tertiary children's hospital from 2009 to 2020 were reviewed. Automated tumor segmentation and grading pipeline includes (1) a modified U-Net for tumor segmentation; (2) extraction of radiomic textural features; (3) feature-based ComBat harmonization for removal of variabilities across scanners; (4) feature selection using 2 approaches, namely, ( a ) an ensemble approach and ( b ) stepwise forward-and-backward selection method using logistic regression classifier; and (5) radiomics features-based classification of MYCN gene amplification using machine learning classifiers.Median train/test Dice score for modified U-Net was 0.728/0.680. The top 3 features from the ensemble approach were neighborhood gray-tone difference matrix (NGTDM) busyness, NGTDM strength, and gray-level run-length matrix (GLRLM) low gray-level run emphasis, whereas those from the stepwise approach were GLRLM low gray-level run emphasis, GLRLM high gray-level run emphasis, and NGTDM coarseness. The top-performing tumor classification algorithm achieved a weighted F1 score of 97%, an area under the receiver operating characteristic curve of 96.9%, an accuracy of 96.97%, and a negative predictive value of 100%. Harmonization-based tumor classification improved the accuracy by 2% to 3% for all classifiers.The proposed end-to-end framework achieved high accuracy for MYCN gene amplification status classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘善若发布了新的文献求助10
刚刚
Akim应助阳光采纳,获得10
1秒前
2秒前
20011013完成签到 ,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
华仔应助机灵飞阳采纳,获得10
10秒前
潘善若发布了新的文献求助10
10秒前
11秒前
陈少华完成签到 ,获得积分10
11秒前
下一秒发布了新的文献求助10
12秒前
杨乃彬完成签到,获得积分10
12秒前
取名叫做利完成签到,获得积分10
13秒前
赘婿应助喻义梅采纳,获得10
14秒前
小二郎应助小门采纳,获得10
15秒前
ll发布了新的文献求助10
18秒前
正直的鸿完成签到,获得积分10
23秒前
24秒前
万能图书馆应助高贵梦露采纳,获得10
25秒前
momo发布了新的文献求助10
27秒前
传奇3应助boltos采纳,获得10
28秒前
28秒前
29秒前
要减肥笑阳完成签到 ,获得积分10
30秒前
全若之发布了新的文献求助10
35秒前
Jasper应助momo采纳,获得10
37秒前
Kasom完成签到 ,获得积分10
44秒前
顺利一德完成签到,获得积分20
45秒前
香蕉觅云应助Afaq采纳,获得10
45秒前
45秒前
45秒前
manman完成签到,获得积分10
46秒前
46秒前
哈哈哈完成签到,获得积分10
46秒前
YamDaamCaa应助科研通管家采纳,获得30
47秒前
47秒前
领导范儿应助科研通管家采纳,获得10
47秒前
香蕉觅云应助科研通管家采纳,获得10
47秒前
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136