Prediction of MYCN Gene Amplification in Pediatric Neuroblastomas: Development of a Deep Learning–Based Tool for Automatic Tumor Segmentation and Comparative Analysis of Computed Tomography–Based Radiomics Features Harmonization

人工智能 特征选择 分割 计算机科学 接收机工作特性 随机森林 无线电技术 医学 机器学习 模式识别(心理学)
作者
Ling Yun Yeow,Yu Xuan Teh,Xinyu Lu,Arvind Channarayapatna Srinivasa,Eelin Tan,Timothy Shao Ern Tan,Phua Hwee Tang,Bhanu Prakash
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (5): 786-795 被引量:4
标识
DOI:10.1097/rct.0000000000001480
摘要

MYCN oncogene amplification is closely linked to high-grade neuroblastoma with poor prognosis. Accurate quantification is essential for risk assessment, which guides clinical decision making and disease management. This study proposes an end-to-end deep-learning framework for automatic tumor segmentation of pediatric neuroblastomas and radiomics features-based classification of MYCN gene amplification.Data from pretreatment contrast-enhanced computed tomography scans and MYCN status from 47 cases of pediatric neuroblastomas treated at a tertiary children's hospital from 2009 to 2020 were reviewed. Automated tumor segmentation and grading pipeline includes (1) a modified U-Net for tumor segmentation; (2) extraction of radiomic textural features; (3) feature-based ComBat harmonization for removal of variabilities across scanners; (4) feature selection using 2 approaches, namely, ( a ) an ensemble approach and ( b ) stepwise forward-and-backward selection method using logistic regression classifier; and (5) radiomics features-based classification of MYCN gene amplification using machine learning classifiers.Median train/test Dice score for modified U-Net was 0.728/0.680. The top 3 features from the ensemble approach were neighborhood gray-tone difference matrix (NGTDM) busyness, NGTDM strength, and gray-level run-length matrix (GLRLM) low gray-level run emphasis, whereas those from the stepwise approach were GLRLM low gray-level run emphasis, GLRLM high gray-level run emphasis, and NGTDM coarseness. The top-performing tumor classification algorithm achieved a weighted F1 score of 97%, an area under the receiver operating characteristic curve of 96.9%, an accuracy of 96.97%, and a negative predictive value of 100%. Harmonization-based tumor classification improved the accuracy by 2% to 3% for all classifiers.The proposed end-to-end framework achieved high accuracy for MYCN gene amplification status classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱良宇发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
Chelsea完成签到,获得积分10
2秒前
3秒前
May关闭了May文献求助
3秒前
culu发布了新的文献求助10
4秒前
如风随水发布了新的文献求助10
4秒前
努力完成签到,获得积分20
5秒前
5秒前
6秒前
CodeCraft应助中心湖小海棠采纳,获得10
6秒前
ang完成签到,获得积分10
6秒前
duankefei完成签到,获得积分20
6秒前
852应助iiing采纳,获得10
7秒前
酷波er应助shuiyu采纳,获得10
7秒前
8秒前
易玟发布了新的文献求助10
8秒前
8秒前
Aria发布了新的文献求助10
8秒前
Meira完成签到,获得积分10
8秒前
汉堡包应助sancao采纳,获得10
8秒前
明理的天真完成签到,获得积分10
8秒前
8秒前
10秒前
bkagyin应助嘻嘻不嘻嘻采纳,获得10
10秒前
ly发布了新的文献求助30
10秒前
如风随水完成签到,获得积分10
10秒前
xiaomei发布了新的文献求助10
11秒前
12秒前
12秒前
catut完成签到,获得积分10
12秒前
狒狒发布了新的文献求助10
13秒前
Chroninus完成签到,获得积分10
13秒前
xxfsx应助Erdongdong采纳,获得10
13秒前
臻灏完成签到,获得积分10
13秒前
852应助Aria采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474749
求助须知:如何正确求助?哪些是违规求助? 4576493
关于积分的说明 14358370
捐赠科研通 4504478
什么是DOI,文献DOI怎么找? 2468288
邀请新用户注册赠送积分活动 1455826
关于科研通互助平台的介绍 1429748