材料科学
微波食品加热
插层(化学)
吸收(声学)
氨
导电体
光电子学
电阻率和电导率
分析化学(期刊)
化学工程
复合材料
无机化学
有机化学
电气工程
物理
工程类
量子力学
化学
作者
Yiqian Du,Zhikai Yan,Wenbin You,Qiaoqiao Men,Guanyu Chen,Xiaowei Lv,Yuyang Wu,Kaicheng Luo,Biao Zhao,Jincang Zhang,Renchao Che
标识
DOI:10.1002/adfm.202301449
摘要
Abstract Surface chemistry and interlayer engineering determines the electrical properties of 2D MXene. However, it remains challenging to regulate the surface and interfacial chemistry of MXene simultaneously. Herein, simultaneous modulation of Ti 3 C 2 T x MXene surface termination and layer spacing by alkali treatment are achieved. The electrical and electromagnetic properties of Ti 3 C 2 T x are investigated in detail with respect to KOH and ammonia concentration dependence. A high concentration of KOH caused the Ti 3 C 2 T x layer spacing to expand to 13.7 Å and the surface O/F ratio to increase to 33.84. Because of its weaker ionization effect, ammonia provides finer tuning compared to the drastic intercalation of KOH with a thorough sweeping of the F‐containing groups. Ti 3 C 2 T x is enriched with conductive ‐OH termination after ammonia treatment, which achieves an effective balance with the increased interlayer resistance. Therefore, NH 3 H 2 O‐Ti 3 C 2 T x achieves broad‐band impedance matching and exhibits an efficient microwave loss of −49.1 dB at a low thickness of 1.7 mm, with an effective frequency bandwidth of 3.9 GHz. The results herein optimize the electrical properties of Ti 3 C 2 T x using surface and interfacial chemistry to achieve broad microwave absorption, providing a framework for enhancing the electromagnetic wave loss of intrinsic MXene.
科研通智能强力驱动
Strongly Powered by AbleSci AI