Optimization of geometric parameters of ejector for fuel cell system based on multi-objective optimization method

喷油器 喷嘴 夹带(生物音乐学) 混合(物理) 航程(航空) 机械 加权 控制理论(社会学) 计算流体力学 机械工程 材料科学 工程类 计算机科学 物理 声学 控制(管理) 量子力学 人工智能 节奏 复合材料
作者
Mingtao Hou,Fengxiang Chen,Yaowang Pei
出处
期刊:International Journal of Green Energy [Informa]
卷期号:21 (2): 228-243 被引量:5
标识
DOI:10.1080/15435075.2023.2195919
摘要

ABSTRACTABSTRACTIn this study, the multi-objective orthogonal experiment is employed to optimize the geometric parameters of the ejector. The optimization objective is determined by applying linear weighting to the entrainment ratios for 100 SLPM and 990 SLPM operating conditions. Four geometric parameters are optimized, including the nozzle exit diameter, nozzle exit position, mixing chamber length, the mixing chamber diameter. Moreover, Computational Fluid Dynamics simulations are performed, and the effects of each geometric parameter and the interaction between parameters on the performance of the ejector are ranked by range analysis. The results show that the mixing chamber diameter has the most significant impact on the optimization objective, and the degree of influence of the other factors and interactions on the entrainment ratio varies for different operating conditions. Compared with the initial parameters, the parameters obtained by the multi-objective optimization method have an average improvement of 96% in entrainment ratio over the full operating range, and the experimental results are in general agreement with the simulation results. The adaptability analysis of the ejector performance indicates that the ejector optimized by the multi-objective optimization method can meet the hydrogen excess ratio requirements for the full operating range of the fuel cell system.KEYWORDS: Fuel cellEjectorHydrogen recirculationMulti-objective orthogonal experimentGeometric parameters optimization AcknowledgementsThis work was supported by the [Key Technology R&D Program of Anhui Province] under Grant [Number 2019b05050004]; [National Natural Science Foundation of China] under Grant [Number U21A20166].Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [U21A20166]; Key Technology R&D Program of Anhui Province [2019b05050004].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
1秒前
1111完成签到,获得积分10
1秒前
777完成签到,获得积分10
2秒前
junzilan发布了新的文献求助10
2秒前
2秒前
sun应助leave采纳,获得20
2秒前
2秒前
3秒前
3秒前
Loooong应助小房子采纳,获得10
4秒前
4秒前
云_123完成签到,获得积分10
5秒前
hf发布了新的文献求助10
5秒前
5秒前
赫连烙完成签到,获得积分10
5秒前
小二郎应助整齐小猫咪采纳,获得10
6秒前
领导范儿应助愤怒的源智采纳,获得10
6秒前
李来仪发布了新的文献求助10
6秒前
wisteety发布了新的文献求助10
6秒前
刘老师完成签到 ,获得积分10
6秒前
6秒前
6秒前
shulei发布了新的文献求助10
7秒前
糟糕的冷雪完成签到,获得积分10
7秒前
大模型应助杰森斯坦虎采纳,获得10
7秒前
典雅的如南完成签到 ,获得积分10
8秒前
小马甲应助无限的隶采纳,获得10
8秒前
饱满板栗完成签到 ,获得积分10
8秒前
Can完成签到,获得积分10
8秒前
8秒前
参上发布了新的文献求助10
9秒前
叫滚滚发布了新的文献求助10
9秒前
xiaowu发布了新的文献求助10
9秒前
Yara.H完成签到 ,获得积分10
9秒前
马佳凯发布了新的文献求助10
9秒前
10秒前
自由的明雪完成签到,获得积分10
10秒前
拼死拼活完成签到 ,获得积分10
11秒前
留胡子的煎饼完成签到 ,获得积分10
12秒前
万能图书馆应助通~采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762