Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer

医学 无线电技术 列线图 神经组阅片室 磁共振成像 放射科 阶段(地层学) 磁共振弥散成像 淋巴结 有效扩散系数 淋巴结转移 转移 癌症 肿瘤科 病理 内科学 神经学 古生物学 精神科 生物
作者
Zhenhua Zhang,Xiaojie Wan,Xiyao Lei,Yibo Wu,Ji Zhang,Yao Ai,Bing Yu,Xinmiao Liu,Juebin Jin,Congying Xie,Xiance Jin
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:13
标识
DOI:10.1186/s13244-023-01405-w
摘要

Noninvasive and accurate prediction of lymph node metastasis (LNM) is very important for patients with early-stage cervical cancer (ECC). Our study aimed to investigate the accuracy and sensitivity of radiomics models with features extracted from both intra- and peritumoral regions in magnetic resonance imaging (MRI) with T2 weighted imaging (T2WI) and diffusion weighted imaging (DWI) for predicting LNM.A total of 247 ECC patients with confirmed lymph node status were enrolled retrospectively and randomly divided into training (n = 172) and testing sets (n = 75). Radiomics features were extracted from both intra- and peritumoral regions with different expansion dimensions (3, 5, and 7 mm) in T2WI and DWI. Radiomics signature and combined radiomics models were constructed with selected features. A nomogram was also constructed by combining radiomics model with clinical factors for predicting LNM.The area under curves (AUCs) of radiomics signature with features from tumors in T2WI and DWI were 0.841 vs. 0.791 and 0.820 vs. 0.771 in the training and testing sets, respectively. Combining radiomics features from tumors in the T2WI, DWI and peritumoral 3 mm expansion in T2WI achieved the best performance with an AUC of 0.868 and 0.846 in the training and testing sets, respectively. A nomogram combining age and maximum tumor diameter (MTD) with radiomics signature achieved a C-index of 0.884 in the prediction of LNM for ECC. Radiomics features extracted from both intra- and peritumoral regions in T2WI and DWI are feasible and promising for the preoperative prediction of LNM for patients with ECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
现代雪柳发布了新的文献求助10
2秒前
科研通AI6应助伏玉采纳,获得10
3秒前
Song0558完成签到 ,获得积分10
3秒前
Dou_Xiaowen发布了新的文献求助10
4秒前
Ding发布了新的文献求助10
4秒前
mariannelee发布了新的文献求助10
4秒前
悲凉的大娘完成签到 ,获得积分10
4秒前
小溪完成签到,获得积分20
4秒前
桐桐应助潇洒飞丹采纳,获得10
5秒前
CC发布了新的文献求助10
6秒前
斯文从筠发布了新的文献求助10
6秒前
大洋猪发布了新的文献求助10
6秒前
11发布了新的文献求助10
8秒前
jzhou88完成签到,获得积分10
8秒前
8秒前
8秒前
小溪发布了新的文献求助10
9秒前
镓氧锌钇铀应助不i学习z采纳,获得10
9秒前
10秒前
10秒前
今夜无人入眠完成签到,获得积分10
11秒前
dr发布了新的文献求助10
11秒前
伊yan完成签到 ,获得积分10
12秒前
victory_liu完成签到,获得积分10
13秒前
李健的小迷弟应助keyan_zhou采纳,获得10
13秒前
14秒前
hilm应助bayes111采纳,获得10
15秒前
Ilan发布了新的文献求助10
15秒前
15秒前
123发布了新的文献求助10
17秒前
赵金贤完成签到,获得积分10
17秒前
17秒前
17秒前
MZT完成签到,获得积分10
17秒前
小蘑菇应助斯文从筠采纳,获得10
19秒前
20秒前
上官若男应助自由的冰蓝采纳,获得10
20秒前
暴躁的马里奥完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458217
求助须知:如何正确求助?哪些是违规求助? 4564343
关于积分的说明 14294578
捐赠科研通 4489225
什么是DOI,文献DOI怎么找? 2458909
邀请新用户注册赠送积分活动 1448785
关于科研通互助平台的介绍 1424417