Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer

医学 无线电技术 列线图 神经组阅片室 磁共振成像 放射科 阶段(地层学) 磁共振弥散成像 淋巴结 有效扩散系数 淋巴结转移 转移 癌症 肿瘤科 病理 内科学 神经学 古生物学 精神科 生物
作者
Zhenhua Zhang,Xiaojie Wan,Xiyao Lei,Yibo Wu,Ji Zhang,Yao Ai,Bing Yu,Xinmiao Liu,Juebin Jin,Congying Xie,Xiance Jin
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:13
标识
DOI:10.1186/s13244-023-01405-w
摘要

Noninvasive and accurate prediction of lymph node metastasis (LNM) is very important for patients with early-stage cervical cancer (ECC). Our study aimed to investigate the accuracy and sensitivity of radiomics models with features extracted from both intra- and peritumoral regions in magnetic resonance imaging (MRI) with T2 weighted imaging (T2WI) and diffusion weighted imaging (DWI) for predicting LNM.A total of 247 ECC patients with confirmed lymph node status were enrolled retrospectively and randomly divided into training (n = 172) and testing sets (n = 75). Radiomics features were extracted from both intra- and peritumoral regions with different expansion dimensions (3, 5, and 7 mm) in T2WI and DWI. Radiomics signature and combined radiomics models were constructed with selected features. A nomogram was also constructed by combining radiomics model with clinical factors for predicting LNM.The area under curves (AUCs) of radiomics signature with features from tumors in T2WI and DWI were 0.841 vs. 0.791 and 0.820 vs. 0.771 in the training and testing sets, respectively. Combining radiomics features from tumors in the T2WI, DWI and peritumoral 3 mm expansion in T2WI achieved the best performance with an AUC of 0.868 and 0.846 in the training and testing sets, respectively. A nomogram combining age and maximum tumor diameter (MTD) with radiomics signature achieved a C-index of 0.884 in the prediction of LNM for ECC. Radiomics features extracted from both intra- and peritumoral regions in T2WI and DWI are feasible and promising for the preoperative prediction of LNM for patients with ECC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
联合ccccc发布了新的文献求助10
刚刚
Ray羽曦~完成签到,获得积分10
1秒前
1秒前
缥缈不惜发布了新的文献求助10
1秒前
柒号完成签到,获得积分0
1秒前
2秒前
懵懂的钥匙关注了科研通微信公众号
2秒前
Tan完成签到 ,获得积分10
2秒前
2秒前
韩韩发布了新的文献求助10
2秒前
天天快乐应助Renn采纳,获得10
3秒前
牢牛马完成签到 ,获得积分10
3秒前
4秒前
fd163c发布了新的文献求助20
4秒前
4秒前
纯牛奶完成签到,获得积分10
4秒前
叶帆发布了新的文献求助10
5秒前
天思发布了新的文献求助10
5秒前
littlequiet完成签到,获得积分10
5秒前
Mrmiss666完成签到,获得积分10
6秒前
6秒前
6秒前
菠菜驳回了tianhe应助
7秒前
淡然的铭完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
浮游应助完美的映秋采纳,获得10
8秒前
bertrand发布了新的文献求助40
8秒前
8秒前
sxl发布了新的文献求助10
9秒前
小雨完成签到,获得积分10
9秒前
科研通AI2S应助酷酷的半凡采纳,获得10
9秒前
wanci应助科研小王采纳,获得10
9秒前
研友_VZG7GZ应助202211010668采纳,获得10
9秒前
9秒前
10秒前
学习完成签到,获得积分10
10秒前
10秒前
纯真的晓啸完成签到,获得积分10
10秒前
大豌豆完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869