Synergizing machine learning, molecular simulation and experiment to develop polymer membranes for solvent recovery

纳滤 渗透 溶剂 甲醇 聚合物 磁导率 化学工程 材料科学 色谱法 化学 有机化学 工程类 生物化学
作者
Qisong Xu,Jie Gao,Fan Feng,Tai‐Shung Chung,Jianwen Jiang
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:678: 121678-121678 被引量:24
标识
DOI:10.1016/j.memsci.2023.121678
摘要

Organic solvent nanofiltration (OSN) is a robust membrane technology for solvent recovery and molecular separation in harsh conditions. However, the current OSN membranes are largely produced through trial-and-error methods. In this study, machine learning (ML), molecular simulation (MS) and experiment are synergized for the development of OSN membranes. Using three different learning strategies, ML models are first constructed to identify critical gross properties (i.e., solvent viscosity, membrane thickness and water contact angle) and establish a phenomenological relationship for permeability prediction. Subsequently, ML models based on molecular representation via concatenated fragments are developed to predict methanol permeabilities in three polymer of intrinsic microporosity (PIM) membranes (PIM-A1, CX-PIM-A1 and PIM-8). The methanol permeability predicted in PIM-A1 is the highest among the three and also higher than that in archetypal PIM-1. Next, MS is conducted to provide microscopic insights into swelling behavior and methanol permeation in the three PIM membranes. Finally, the PIM-A1 membrane is experimentally fabricated and found to exhibit nearly complete solute rejection and methanol permeability of 2.33 × 10−6 L·m/m2·h·bar, which validates the ML prediction. This study demonstrates that the synergy of ML, MS and experiment can fundamentally elucidate and quantitatively predict solvent permeation in polymer membranes, and the holistic approach may advance the development of new membranes for solvent recovery and other important separation processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niobium发布了新的文献求助10
1秒前
anan发布了新的文献求助10
1秒前
1秒前
Orange李完成签到,获得积分10
1秒前
Orange应助自由妙竹采纳,获得10
1秒前
2秒前
在水一方应助随便采纳,获得10
3秒前
田様应助xyh采纳,获得10
3秒前
Min发布了新的文献求助10
3秒前
momo发布了新的文献求助10
3秒前
4秒前
5秒前
Roy发布了新的文献求助10
5秒前
dongdong发布了新的文献求助10
6秒前
6秒前
orixero应助朴实小甜瓜采纳,获得10
6秒前
7秒前
7秒前
莫名完成签到,获得积分10
7秒前
柒咩咩完成签到 ,获得积分10
7秒前
艾丽发布了新的文献求助10
7秒前
Ava应助骆驼德96933采纳,获得10
7秒前
7秒前
8秒前
可爱的函函应助森一采纳,获得10
9秒前
王W发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助connieGZ采纳,获得10
10秒前
10秒前
852应助qiang采纳,获得10
11秒前
zxx完成签到 ,获得积分0
11秒前
11秒前
在水一方应助维成采纳,获得10
11秒前
Orange应助流夏采纳,获得10
11秒前
gooooood发布了新的文献求助10
11秒前
lh完成签到,获得积分10
12秒前
12秒前
LG发布了新的文献求助10
12秒前
12秒前
无情书萱发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720067
求助须知:如何正确求助?哪些是违规求助? 5258729
关于积分的说明 15290203
捐赠科研通 4869657
什么是DOI,文献DOI怎么找? 2614906
邀请新用户注册赠送积分活动 1564885
关于科研通互助平台的介绍 1522079