Synergizing machine learning, molecular simulation and experiment to develop polymer membranes for solvent recovery

纳滤 渗透 溶剂 甲醇 聚合物 磁导率 化学工程 材料科学 色谱法 化学 有机化学 工程类 生物化学
作者
Qisong Xu,Jie Gao,Fan Feng,Kai Yu Wang,Jianwen Jiang
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:678: 121678-121678 被引量:16
标识
DOI:10.1016/j.memsci.2023.121678
摘要

Organic solvent nanofiltration (OSN) is a robust membrane technology for solvent recovery and molecular separation in harsh conditions. However, the current OSN membranes are largely produced through trial-and-error methods. In this study, machine learning (ML), molecular simulation (MS) and experiment are synergized for the development of OSN membranes. Using three different learning strategies, ML models are first constructed to identify critical gross properties (i.e., solvent viscosity, membrane thickness and water contact angle) and establish a phenomenological relationship for permeability prediction. Subsequently, ML models based on molecular representation via concatenated fragments are developed to predict methanol permeabilities in three polymer of intrinsic microporosity (PIM) membranes (PIM-A1, CX-PIM-A1 and PIM-8). The methanol permeability predicted in PIM-A1 is the highest among the three and also higher than that in archetypal PIM-1. Next, MS is conducted to provide microscopic insights into swelling behavior and methanol permeation in the three PIM membranes. Finally, the PIM-A1 membrane is experimentally fabricated and found to exhibit nearly complete solute rejection and methanol permeability of 2.33 × 10−6 L·m/m2·h·bar, which validates the ML prediction. This study demonstrates that the synergy of ML, MS and experiment can fundamentally elucidate and quantitatively predict solvent permeation in polymer membranes, and the holistic approach may advance the development of new membranes for solvent recovery and other important separation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
全名发布了新的文献求助30
3秒前
wdl完成签到 ,获得积分10
5秒前
7秒前
思源应助悦耳的城采纳,获得10
7秒前
白泯完成签到,获得积分10
7秒前
7秒前
自由的子默关注了科研通微信公众号
11秒前
chenman9397完成签到 ,获得积分10
12秒前
1234567890l发布了新的文献求助10
12秒前
14秒前
李爱国应助细心怜寒采纳,获得10
16秒前
Jasper应助1234567890l采纳,获得10
17秒前
大佬应助qingqing采纳,获得10
18秒前
SciGPT应助YIWENNN采纳,获得10
18秒前
18秒前
20秒前
21秒前
21秒前
cstp完成签到,获得积分10
21秒前
21秒前
kitty完成签到 ,获得积分10
22秒前
葱花完成签到,获得积分10
23秒前
23秒前
weing发布了新的文献求助10
24秒前
25秒前
25秒前
大花卷完成签到,获得积分10
26秒前
super chan发布了新的文献求助10
26秒前
兴奋蜡烛完成签到,获得积分10
26秒前
调研昵称发布了新的文献求助30
27秒前
DQ发布了新的文献求助10
27秒前
文静萤发布了新的文献求助10
27秒前
27秒前
小于完成签到,获得积分10
28秒前
29秒前
weing完成签到,获得积分10
29秒前
CipherSage应助摆哥采纳,获得10
30秒前
31秒前
33秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343455
求助须知:如何正确求助?哪些是违规求助? 2970510
关于积分的说明 8644296
捐赠科研通 2650587
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661536