UNeXt: a Low-Dose CT denoising UNet model with the modified ConvNeXt block

降噪 块(置换群论) 图像去噪 计算机科学 人工智能 数学 几何学
作者
Farzan Niknejad Mazandarani,Paul Babyn,Javad Alirezaie
标识
DOI:10.1109/icassp49357.2023.10095645
摘要

In recent decades, clinicians have widely utilized computed tomography (CT) for medical diagnosis. Medical radiation is potentially hazardous and therefore reducing x-ray radiation in CT scanning is desired. However, decreasing radiation dose leads to increased noise and artifacts. In this paper, low-dose CT images (LDCT) have been denoised in the UNet-based novel architecture of convolutional neural network (CNN) and compared with normal-dose images (NDCT). A multi-feature extraction block (MFEB) is placed to get extra features in the different receptive fields. The modified ConvNeXt block for CT images (CTNeXt) is developed to extract diverse feature data at various scales. Furthermore, we introduced the image reconstruction block to gradually merge the group convolutions' feature information and eliminate the gap between the features to ease the transmission of multi-scale information from subsequent stages. The network is optimized using the integration of mean-squared error (MSE), mean-absolute error (MAE), and contrastive loss via vgg16-net. These functions show that they could effectively prevent edge over-smoothing, improve image texture, and preserve structural details. A comparative analysis of the proposed network demonstrates that our method outperforms state-of-the-art denoising models, such as Wasserstein Generative Adversarial Network (WGAN-vgg) and Residual Convolutional Encoder-Decoder (RED-CNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
用户5063899完成签到,获得积分10
1秒前
1秒前
1秒前
Silverexile发布了新的文献求助20
2秒前
2秒前
三里墩头应助兮兮采纳,获得10
2秒前
Maribo完成签到,获得积分10
2秒前
Owen应助无语啦采纳,获得10
3秒前
无聊的凉面完成签到,获得积分10
3秒前
3秒前
轻松小之发布了新的文献求助10
3秒前
htmy完成签到,获得积分10
3秒前
好好学习完成签到,获得积分10
4秒前
4秒前
cuihao完成签到,获得积分10
4秒前
YEFEIeee完成签到 ,获得积分10
5秒前
Luke发布了新的文献求助10
5秒前
prprya发布了新的文献求助10
6秒前
深情的一曲完成签到,获得积分10
6秒前
小鱼爱吃肉应助wang采纳,获得10
6秒前
qqqq发布了新的文献求助10
6秒前
6秒前
啦啦啦完成签到,获得积分20
7秒前
7秒前
月半小董完成签到,获得积分10
7秒前
7秒前
王嘉文发布了新的文献求助10
7秒前
Jasper应助陌路孤星采纳,获得10
8秒前
8秒前
9秒前
小会完成签到,获得积分10
9秒前
9秒前
虚幻的冰真完成签到,获得积分10
10秒前
香蕉觅云应助单纯乘风采纳,获得10
10秒前
forge发布了新的文献求助10
10秒前
小二郎应助深情的怀绿采纳,获得30
10秒前
SaturnY完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI2S应助marska采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299089
求助须知:如何正确求助?哪些是违规求助? 2934118
关于积分的说明 8467235
捐赠科研通 2607521
什么是DOI,文献DOI怎么找? 1423776
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645336