Metal-organic frameworks in separations: A review

化学 吸附 金属有机骨架 气体分离 纳米技术 溶剂 有机化学 材料科学 生物化学
作者
Sepideh Khaki Firooz,Daniel W. Armstrong
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1234: 340208-340208 被引量:47
标识
DOI:10.1016/j.aca.2022.340208
摘要

It is possible to design high permeability and selective metal-organic frameworks (MOFs) with designable functionality. The large number of possible MOF structural permutations arise from the considerable number of possible metal nodes and the great variety of organic ligands used for these materials. Herein, we discuss the applications of MOFs in all manner of separations including gas adsorption/separations, membranes, gas chromatography (GC), liquid chromatography (LC), water harvesting and the computer/machine learning design of MOFs. Each application requires MOFs with specific structural motifs. Relevant properties include polarity, temperature stability, solvent stability, pore size, pore volume, surface area, etc. MOFs used for the adsorption and separation of gases can be quite different from those used in membrane technologies or as chromatographic stationary phases. In the area of chromatography, there are far more reports of GC separations than LC. Also, there has been considerable efforts at developing MOF chiral stationary phases. Hence additional chiral components are added to the MOF support, such as cyclodextrins and various amino acids. MOFs have been used as general adsorbents for both inorganic and organic molecules. A very unique MOF application involves water harvesting. It is shown that potable water can be made in arid environments by selectively adsorbing water vapor from air, even at low humidity. Such MOFs could have important analytical applications, as well. Finally, there is a new focus on automated design of MOFs with desired properties for specific tasks, using computational design and machine learning. This is briefly covered in the final section of this review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘怀蕊发布了新的文献求助10
刚刚
舒心赛凤发布了新的文献求助10
刚刚
文艺明杰完成签到,获得积分10
刚刚
1秒前
1秒前
wawuuuuu完成签到,获得积分10
1秒前
Akim应助谢家宝树采纳,获得10
1秒前
LU发布了新的文献求助10
1秒前
2秒前
pinging完成签到,获得积分10
2秒前
通~发布了新的文献求助10
3秒前
lai完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
隐形曼青应助彭彭采纳,获得10
5秒前
卡卡完成签到 ,获得积分10
5秒前
科目三应助季夏采纳,获得10
6秒前
6秒前
今后应助激动的一手采纳,获得10
6秒前
许中原完成签到,获得积分10
6秒前
无限的幻灵完成签到,获得积分10
6秒前
7秒前
整齐路灯完成签到,获得积分10
7秒前
紧张的梦岚应助跳跃乘风采纳,获得20
7秒前
简单水杯完成签到 ,获得积分10
7秒前
大胆的尔岚完成签到,获得积分10
8秒前
8秒前
Sene完成签到,获得积分10
8秒前
哈哈大笑发布了新的文献求助10
8秒前
叶飞荷发布了新的文献求助10
9秒前
9秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
9秒前
9秒前
123456完成签到 ,获得积分10
10秒前
10秒前
11秒前
乐乐乐乐乐完成签到,获得积分10
11秒前
Q.curiosity完成签到,获得积分10
12秒前
丘比特应助我行我素采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762