亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Metal-organic frameworks in separations: A review

化学 吸附 金属有机骨架 气体分离 纳米技术 溶剂 有机化学 材料科学 生物化学
作者
Sepideh Khaki Firooz,Daniel W. Armstrong
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1234: 340208-340208 被引量:72
标识
DOI:10.1016/j.aca.2022.340208
摘要

It is possible to design high permeability and selective metal-organic frameworks (MOFs) with designable functionality. The large number of possible MOF structural permutations arise from the considerable number of possible metal nodes and the great variety of organic ligands used for these materials. Herein, we discuss the applications of MOFs in all manner of separations including gas adsorption/separations, membranes, gas chromatography (GC), liquid chromatography (LC), water harvesting and the computer/machine learning design of MOFs. Each application requires MOFs with specific structural motifs. Relevant properties include polarity, temperature stability, solvent stability, pore size, pore volume, surface area, etc. MOFs used for the adsorption and separation of gases can be quite different from those used in membrane technologies or as chromatographic stationary phases. In the area of chromatography, there are far more reports of GC separations than LC. Also, there has been considerable efforts at developing MOF chiral stationary phases. Hence additional chiral components are added to the MOF support, such as cyclodextrins and various amino acids. MOFs have been used as general adsorbents for both inorganic and organic molecules. A very unique MOF application involves water harvesting. It is shown that potable water can be made in arid environments by selectively adsorbing water vapor from air, even at low humidity. Such MOFs could have important analytical applications, as well. Finally, there is a new focus on automated design of MOFs with desired properties for specific tasks, using computational design and machine learning. This is briefly covered in the final section of this review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
16秒前
26秒前
犬来八荒发布了新的文献求助10
26秒前
simple1完成签到 ,获得积分10
30秒前
37秒前
38秒前
39秒前
脑洞疼应助科研通管家采纳,获得10
46秒前
Criminology34应助科研通管家采纳,获得10
46秒前
Criminology34应助科研通管家采纳,获得10
46秒前
Cherry发布了新的文献求助10
46秒前
charih完成签到 ,获得积分10
47秒前
51秒前
CodeCraft应助犬来八荒采纳,获得10
54秒前
1分钟前
1分钟前
ding应助小橘子吃傻子采纳,获得10
1分钟前
1分钟前
Tania完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
辉辉应助科研通管家采纳,获得10
2分钟前
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
wanci应助Tingshuo采纳,获得10
3分钟前
3分钟前
3分钟前
Future完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091