Deep Reinforcement Learning for Network Provisioning in Elastic Optical Networks

强化学习 计算机科学 可扩展性 网络拓扑 供应 贪婪算法 卷积神经网络 人工智能 计算机网络 算法 数据库
作者
Junior Momo Ziazet,Brigitte Jaumard
标识
DOI:10.1109/icc45855.2022.9839228
摘要

We design an effective and scalable Deep Reinforcement Learning (DRL) approach for the Routing, Modulation and Spectrum Assignment (RMSA) problem in elastic optical networks. We use Convolutional Neural Networks (CNN) to embed the state and Deep Neural Networks (DNN) to learn the policy. We propose a novel state representation and reward function that interestingly guide the agent on assigning appropriate routes and spectrum by incorporating information on the spectrum utilisation and spectrum fragmentation. This gives the agent information about the consequence or cost of each action across the network, reducing the level of knowledge abstraction required for the agent. To show the effectiveness of the reward function and the importance of well-designed state representations, we have designed two state representations: the first with aggregation of spectrum occupancy information and the second without aggregation. The Proximal Policy Optimization (PPO) algorithm is investigated with an actor critic model where an entropy bonus is added to the loss function to ensure sufficient exploration. The proposed solution is compared with a greedy heuristic and a PPO with standard reward and state representation. Numerical results show that the proposed model provides very good solutions and works well on dataset instances with large topologies (up to 75 nodes). The proposed PPO outperformed the baseline algorithms by obtaining the largest throughput on all test instances. In addition, its spectrum usage has the lowest fragmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
刚刚
刚刚
科研通AI2S应助真实的一鸣采纳,获得10
1秒前
2秒前
houbinghua发布了新的文献求助10
4秒前
4秒前
6秒前
8秒前
汉堡包应助赖道之采纳,获得10
9秒前
9秒前
10秒前
鲤鱼小熊猫完成签到,获得积分10
10秒前
11秒前
13秒前
13秒前
科研通AI2S应助FUsir采纳,获得10
13秒前
贪玩小小完成签到 ,获得积分10
14秒前
山止川行完成签到 ,获得积分10
14秒前
卡拉尔德发布了新的文献求助10
14秒前
氘代乙腈是不贵的呀完成签到,获得积分10
14秒前
16秒前
16秒前
大个应助shain采纳,获得10
17秒前
隐形曼青应助杨叔叔采纳,获得10
18秒前
18秒前
Joshua发布了新的文献求助30
20秒前
田様应助Aru采纳,获得10
20秒前
21秒前
undertaker发布了新的文献求助10
21秒前
25秒前
25秒前
马马完成签到,获得积分10
25秒前
cocolu发布了新的文献求助10
26秒前
27秒前
FUsir完成签到,获得积分10
28秒前
28秒前
29秒前
复杂访冬完成签到 ,获得积分10
30秒前
领导范儿应助zls采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944898
关于积分的说明 8521939
捐赠科研通 2620639
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650134