Reliability-based multi-attribute large group decision making under probabilistic linguistic environment

群体决策 计算机科学 可靠性(半导体) 概率逻辑 自然语言处理 群(周期表) 人工智能 机器学习 心理学 社会心理学 量子力学 物理 功率(物理) 有机化学 化学
作者
Xiangyu Zhong,Xuanhua Xu,Xiaohong Chen,Mark Goh
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118342-118342 被引量:11
标识
DOI:10.1016/j.eswa.2022.118342
摘要

• A reliability measure method for PLTS is proposed. • A reliability-based normalization method is presented to normalize ignorant PLTSs. • A similarity-reliability based clustering method is developed to classify experts. • A reliability-based CRP is proposed to improve consensus and reliability degrees. This study proposes a more rational and effective multi-attribute large group decision making (MALGDM) method with probabilistic linguistic term set (PLTS) from reliability perspective. A reliability measure method is first proposed to compute the reliability degree of the PLTS, and then a normalization method is presented to normalize the ignorant PLTSs with respect to maximizing their reliability degrees. An efficient clustering method combining the opinion similarity of experts and the reliability degrees of the clusters formed is introduced. Moreover, an objective method of determining the similarity and reliability thresholds is presented. After classifying the large-scale experts, the consensus levels of clusters and the global consensus level are measured and the cluster that need to adjust information is identified based on its consensus level and reliability degree. Then, an optimization model to maximize the global consensus level and the global reliability degree is then built to obtain the evaluation values for improving the consensus levels and reliability degrees. The deviation between the expectation values of the evaluation values before and after adjustment is constrained by the parameter provided by the experts within the cluster that need adjustment. Finally, an application example of the selection of the hotel for isolating the entry personnel during the Covid-19 pandemic and some comparative analyses are provided to validate the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心的慕青完成签到,获得积分10
2秒前
思源应助老实的水蜜桃采纳,获得10
2秒前
卜凡发布了新的文献求助10
2秒前
小马甲应助刘晓倩采纳,获得10
3秒前
chenfeng2163完成签到,获得积分10
4秒前
周钰滢完成签到 ,获得积分10
5秒前
冷静曼岚完成签到,获得积分10
6秒前
6秒前
桐桐应助无限不尤采纳,获得10
6秒前
7秒前
独特的元霜完成签到,获得积分10
7秒前
姚增楠完成签到,获得积分10
9秒前
车秋寒发布了新的文献求助10
10秒前
油条狗完成签到,获得积分10
10秒前
迷人成协完成签到,获得积分10
10秒前
JC完成签到,获得积分10
10秒前
tanfor完成签到 ,获得积分10
10秒前
12秒前
完美世界应助冲冲冲采纳,获得10
13秒前
spzdss完成签到,获得积分10
14秒前
TKTKW发布了新的文献求助10
14秒前
浮游应助zmy采纳,获得30
15秒前
领导范儿应助之之采纳,获得10
15秒前
Owen应助思妍采纳,获得10
15秒前
legend发布了新的文献求助10
15秒前
洁净糖豆完成签到,获得积分10
17秒前
一期一会完成签到,获得积分10
18秒前
小债发布了新的文献求助20
18秒前
18秒前
18秒前
19秒前
小李完成签到 ,获得积分10
21秒前
予诚完成签到 ,获得积分10
21秒前
22秒前
刘晓倩发布了新的文献求助10
22秒前
23秒前
xixixixi完成签到,获得积分10
23秒前
利利完成签到,获得积分20
24秒前
顾矜应助瓜瓜采纳,获得10
24秒前
乐乐应助瓜瓜采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305259
求助须知:如何正确求助?哪些是违规求助? 4451472
关于积分的说明 13852140
捐赠科研通 4338857
什么是DOI,文献DOI怎么找? 2382237
邀请新用户注册赠送积分活动 1377329
关于科研通互助平台的介绍 1344719