Reliability-based multi-attribute large group decision making under probabilistic linguistic environment

群体决策 计算机科学 可靠性(半导体) 概率逻辑 自然语言处理 群(周期表) 人工智能 机器学习 心理学 社会心理学 量子力学 物理 功率(物理) 有机化学 化学
作者
Xiangyu Zhong,Xuanhua Xu,Xiaohong Chen,Mark Goh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118342-118342 被引量:11
标识
DOI:10.1016/j.eswa.2022.118342
摘要

• A reliability measure method for PLTS is proposed. • A reliability-based normalization method is presented to normalize ignorant PLTSs. • A similarity-reliability based clustering method is developed to classify experts. • A reliability-based CRP is proposed to improve consensus and reliability degrees. This study proposes a more rational and effective multi-attribute large group decision making (MALGDM) method with probabilistic linguistic term set (PLTS) from reliability perspective. A reliability measure method is first proposed to compute the reliability degree of the PLTS, and then a normalization method is presented to normalize the ignorant PLTSs with respect to maximizing their reliability degrees. An efficient clustering method combining the opinion similarity of experts and the reliability degrees of the clusters formed is introduced. Moreover, an objective method of determining the similarity and reliability thresholds is presented. After classifying the large-scale experts, the consensus levels of clusters and the global consensus level are measured and the cluster that need to adjust information is identified based on its consensus level and reliability degree. Then, an optimization model to maximize the global consensus level and the global reliability degree is then built to obtain the evaluation values for improving the consensus levels and reliability degrees. The deviation between the expectation values of the evaluation values before and after adjustment is constrained by the parameter provided by the experts within the cluster that need adjustment. Finally, an application example of the selection of the hotel for isolating the entry personnel during the Covid-19 pandemic and some comparative analyses are provided to validate the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助飞飞飞采纳,获得10
刚刚
CipherSage应助黑囡采纳,获得80
刚刚
我是老大应助霂辰采纳,获得10
2秒前
2秒前
舒适惋庭完成签到,获得积分10
3秒前
小树发布了新的文献求助10
7秒前
调皮正豪发布了新的文献求助10
8秒前
星辰大海应助钱钱采纳,获得10
8秒前
8秒前
9秒前
10秒前
PeterBeau完成签到,获得积分10
10秒前
飞飞飞发布了新的文献求助10
11秒前
美丽语芙完成签到,获得积分10
11秒前
11秒前
追寻清完成签到,获得积分10
12秒前
12秒前
沉默诗柳完成签到,获得积分10
12秒前
123发布了新的文献求助10
13秒前
14秒前
成就的龙猫完成签到,获得积分10
14秒前
科研通AI6应助wlb采纳,获得10
14秒前
16秒前
有魅力的白玉完成签到,获得积分10
17秒前
美丽语芙发布了新的文献求助10
17秒前
万能图书馆应助甜屿采纳,获得10
17秒前
17秒前
18秒前
18秒前
英俊的铭应助可靠安蕾采纳,获得10
19秒前
傲娇的小松鼠完成签到 ,获得积分10
20秒前
xxxxx发布了新的文献求助10
21秒前
罗明芳完成签到,获得积分10
21秒前
21秒前
RATHER发布了新的文献求助10
23秒前
23秒前
璀璨发布了新的文献求助10
23秒前
24秒前
我666发布了新的文献求助10
24秒前
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142670
求助须知:如何正确求助?哪些是违规求助? 4340867
关于积分的说明 13518566
捐赠科研通 4180930
什么是DOI,文献DOI怎么找? 2292666
邀请新用户注册赠送积分活动 1293293
关于科研通互助平台的介绍 1235858