齿合度
化学
催化作用
金属有机骨架
配位复合体
金属
吸附
有机化学
作者
Shiyu Zuo,Zeyu Guan,Yiming Zhang,Fan Yang,Xiaohu Li,Dongya Li
标识
DOI:10.1016/j.cej.2022.138461
摘要
• Altered PMS catalytic pathway via a bidentate binuclear coordination configuration. • The transformed from ·OH and SO 4 ·- to 1 O 2 and high-valent metal species. • DFT was used to explore catalytic mechanisms and oxidation pathways. • 14.5-fold improvement in BPA oxidation kinetics. • Realized rapid oxidation detoxification of toxic organic pollutants and CO 2 capture. The scheme of coordination bridge modification provides a new vision for regulating the catalytic pathway, but how to change the surface coordination of peroxymonosulfate (PMS), thereby affecting the catalytic mechanism of PMS, is still an unknown field. In this, we found that MIL-101(Fe) is expected to control the surface catalytic pathway via the bidentate binuclear coordination configuration, thereby realizing the rapid oxidative detoxification of toxic organic pollutants and CO 2 conversion. Introducing Cu on the surface of MIL-101(Fe) to change the surface chemical environment (MIL-101(Fe)/CuFeO x ) can shift the catalytic pathway, thereby promoting a 14.5-fold improvement in Bisphenol A (BPA) oxidation kinetics (from 0.00697 min -1 to 0.101 min -1 ). Characterization, experiments, and density functional theory (DFT) results show that Cu in the vicinity of Fe can tune the electronic structure and properties of Fe-O-Cu, thereby enhancing the electron transfer rate at the active center, facilitating electronic transitions and PMS adsorption. More importantly, shifting the binding configuration of PMS from monodentate mononuclear coordination on a single Fe center to bidentate binuclear coordination on Fe/Cu centers, shorter distance coordination structures and O-O pulling of PMS. The effect promoted PMS cleavage to generate more ROS and changed the catalytic pathway from the radical pathway to the 1 O 2 and high-valent metal species pathway. The free radical/non-radical pathway co-mediated by 1 O 2 , high-valent metal species, ·OH and SO 4 ·- can effectively reduce the biotoxicity of toxic organic pollutants, and can utilize alkali environment captures CO 2 as a stable carbonate for environmental use. This study provides a strategy for manipulating the catalytic pathway through coordination configuration and a feasible idea for CO 2 conversion in wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI