Deep learning and machine vision for food processing: A survey

机器视觉 人工智能 计算机科学 机器学习 食品加工 图像处理 食品安全 深度学习 质量(理念) 图像(数学) 食品科学 认识论 哲学 化学
作者
Li Zhu,Petros Spachos,Erica Pensini,Konstantinos N. Plataniotis
出处
期刊:Current research in food science [Elsevier]
卷期号:4: 233-249 被引量:209
标识
DOI:10.1016/j.crfs.2021.03.009
摘要

The quality and safety of food is an important issue to the whole society, since it is at the basis of human health, social development and stability. Ensuring food quality and safety is a complex process, and all stages of food processing must be considered, from cultivating, harvesting and storage to preparation and consumption. However, these processes are often labour-intensive. Nowadays, the development of machine vision can greatly assist researchers and industries in improving the efficiency of food processing. As a result, machine vision has been widely used in all aspects of food processing. At the same time, image processing is an important component of machine vision. Image processing can take advantage of machine learning and deep learning models to effectively identify the type and quality of food. Subsequently, follow-up design in the machine vision system can address tasks such as food grading, detecting locations of defective spots or foreign objects, and removing impurities. In this paper, we provide an overview on the traditional machine learning and deep learning methods, as well as the machine vision techniques that can be applied to the field of food processing. We present the current approaches and challenges, and the future trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
ytx发布了新的文献求助10
2秒前
卡卡卡发布了新的文献求助10
2秒前
3秒前
shengbo发布了新的文献求助10
3秒前
JIAO完成签到,获得积分10
3秒前
3秒前
3秒前
wanyanjin应助笑点低黄豆采纳,获得10
3秒前
善学以致用应助Sun1c7采纳,获得10
3秒前
华仔应助星黛露采纳,获得10
3秒前
现代惜蕊发布了新的文献求助10
4秒前
暴躁的小松鼠完成签到,获得积分10
4秒前
充电宝应助海风吹采纳,获得10
4秒前
充电宝应助莫菲采纳,获得10
5秒前
夜空的光芒完成签到 ,获得积分10
5秒前
内向友桃发布了新的文献求助10
5秒前
半富半莲发布了新的文献求助10
5秒前
迪迦发布了新的文献求助10
5秒前
6秒前
木木木发布了新的文献求助10
6秒前
晚风发布了新的文献求助10
6秒前
一元完成签到,获得积分10
6秒前
Stvbborn完成签到 ,获得积分10
7秒前
打打应助DddZS采纳,获得10
8秒前
雨雨爱薯条完成签到 ,获得积分10
8秒前
轩羊羊完成签到 ,获得积分10
9秒前
Crema完成签到,获得积分10
9秒前
星黛露完成签到,获得积分10
11秒前
斯文败类应助snowy_owl采纳,获得10
11秒前
半富半莲完成签到,获得积分10
11秒前
jiu完成签到,获得积分10
12秒前
12秒前
深情安青应助内向友桃采纳,获得10
12秒前
baochao完成签到,获得积分10
12秒前
兴奋寻凝完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487321
求助须知:如何正确求助?哪些是违规求助? 3075301
关于积分的说明 9140449
捐赠科研通 2767524
什么是DOI,文献DOI怎么找? 1518696
邀请新用户注册赠送积分活动 703213
科研通“疑难数据库(出版商)”最低求助积分说明 701699