计算机科学
人工智能
自编码
特征选择
深信不疑网络
深度学习
机器学习
特征(语言学)
特征学习
模式识别(心理学)
特征提取
人工神经网络
支持向量机
语言学
哲学
作者
Mehedi Masud,Parminder Singh,Gurjot Singh Gaba,Avinash Kaur,Roobaea Alroobaea,Mubarak Alrashoud,Salman A. AlQahtani
摘要
Edge Artificial Intelligence (AI) is the latest trend for next-generation computing for data analytics, particularly in predictive edge analytics for high-risk diseases like Parkinson’s Disease (PD). Deep learning learning techniques facilitate edge AI applications for enhanced, real-time handling of data. Dopamine is the cause of Parkinson’s that happens due to the interference of brain cells that produce the substance to regulate the communication of brain cells. The brain cells responsible for generating the dopamine perform adaptation, control, and movement with fluency. Parkinson’s motor symptoms appear on the loss of 60% to 80% of cells, due to the non-production of appropriate dopamine. Recent research found a close connection between the speech impairment and PD. Many researchers have developed a classification algorithm to identify the PD from speech signals. In this article, Adaptive Crow Search Algorithm (ACSA) and Deep Learning (DL)–based optimal feature selection method are introduced. The proposed model is the combination of CROW Search and Deep learning (CROWD) stack sparse autoencoder neural network. Parkinson’s dataset is taken for the experiment from the Irvine dataset repository at the University of California (UCI). In the first phase, dataset cleaning is performed to handle the missing values in the dataset. After that, the proposed ACSA algorithm is employed to find the scrunched feature vector. Furthermore, stack spare autoencoder with seven hidden layers is employed to generate the compressed feature vector. The performance of the proposed CROWD autoencoder model is compared with three feature selection approaches for six supervised classification techniques. The experiment result demonstrates that the performance of the proposed CROWD autoencoder feature selection model has outperformed the benchmarked feature selection techniques: (i) Maximum Relevance (mRMR) (ii) Recursive Feature Elimination (RFE), and (iii) Correlation-based Feature Selection (CFS), to classify Parkinson’s disease. This research has significance in the healthcare sector for the enhancement of classification accuracy up to 0.96%.
科研通智能强力驱动
Strongly Powered by AbleSci AI