CROWD: Crow Search and Deep Learning based Feature Extractor for Classification of Parkinson’s Disease

计算机科学 人工智能 自编码 特征选择 深信不疑网络 深度学习 机器学习 特征(语言学) 特征学习 模式识别(心理学) 特征提取 人工神经网络 支持向量机 语言学 哲学
作者
Mehedi Masud,Parminder Singh,Gurjot Singh Gaba,Avinash Kaur,Roobaea Alroobaea,Mubarak Alrashoud,Salman A. AlQahtani
出处
期刊:ACM Transactions on Internet Technology [Association for Computing Machinery]
卷期号:21 (3): 1-18 被引量:37
标识
DOI:10.1145/3418500
摘要

Edge Artificial Intelligence (AI) is the latest trend for next-generation computing for data analytics, particularly in predictive edge analytics for high-risk diseases like Parkinson’s Disease (PD). Deep learning learning techniques facilitate edge AI applications for enhanced, real-time handling of data. Dopamine is the cause of Parkinson’s that happens due to the interference of brain cells that produce the substance to regulate the communication of brain cells. The brain cells responsible for generating the dopamine perform adaptation, control, and movement with fluency. Parkinson’s motor symptoms appear on the loss of 60% to 80% of cells, due to the non-production of appropriate dopamine. Recent research found a close connection between the speech impairment and PD. Many researchers have developed a classification algorithm to identify the PD from speech signals. In this article, Adaptive Crow Search Algorithm (ACSA) and Deep Learning (DL)–based optimal feature selection method are introduced. The proposed model is the combination of CROW Search and Deep learning (CROWD) stack sparse autoencoder neural network. Parkinson’s dataset is taken for the experiment from the Irvine dataset repository at the University of California (UCI). In the first phase, dataset cleaning is performed to handle the missing values in the dataset. After that, the proposed ACSA algorithm is employed to find the scrunched feature vector. Furthermore, stack spare autoencoder with seven hidden layers is employed to generate the compressed feature vector. The performance of the proposed CROWD autoencoder model is compared with three feature selection approaches for six supervised classification techniques. The experiment result demonstrates that the performance of the proposed CROWD autoencoder feature selection model has outperformed the benchmarked feature selection techniques: (i) Maximum Relevance (mRMR) (ii) Recursive Feature Elimination (RFE), and (iii) Correlation-based Feature Selection (CFS), to classify Parkinson’s disease. This research has significance in the healthcare sector for the enhancement of classification accuracy up to 0.96%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hiro发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
yian007发布了新的文献求助10
1秒前
Jasper应助顺利平文采纳,获得10
1秒前
2秒前
彭于晏应助树袋熊和考拉采纳,获得10
3秒前
3秒前
领导范儿应助酷酷的店员采纳,获得10
3秒前
Ruili发布了新的文献求助10
3秒前
123发布了新的文献求助10
5秒前
MCS发布了新的文献求助10
5秒前
Owen应助小纯洁采纳,获得30
6秒前
852应助梦灵采纳,获得30
6秒前
beizi发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
猪猪hero发布了新的文献求助10
8秒前
caohuijun完成签到,获得积分10
8秒前
顺利平文完成签到,获得积分10
8秒前
大雨完成签到,获得积分10
8秒前
可靠板栗发布了新的文献求助10
9秒前
9秒前
11秒前
可爱的函函应助彭友采纳,获得10
11秒前
11秒前
传奇3应助ZHANGMANLI0422采纳,获得10
12秒前
大方新柔发布了新的文献求助10
12秒前
深情安青应助likes采纳,获得30
12秒前
夜无疆发布了新的文献求助10
13秒前
科研通AI5应助seele采纳,获得10
13秒前
13秒前
Owen应助jinzhituoyan采纳,获得10
13秒前
劲秉应助呆萌代桃采纳,获得20
13秒前
beizi完成签到,获得积分10
14秒前
14秒前
15秒前
现代惋庭发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657791
求助须知:如何正确求助?哪些是违规求助? 3219810
关于积分的说明 9733527
捐赠科研通 2928770
什么是DOI,文献DOI怎么找? 1603674
邀请新用户注册赠送积分活动 756699
科研通“疑难数据库(出版商)”最低求助积分说明 734060