Efficient Maize Tassel-Detection Method using UAV based remote sensing

计算机科学 卷积神经网络 人工智能 高光谱成像 多光谱图像 模式识别(心理学) RGB颜色模型 阈值 任务(项目管理) 计算机视觉 图像(数学) 管理 经济
作者
Ajay Kumar,Sai Vikas Desai,Vineeth N Balasubramanian,P. Rajalakshmi,Wei Guo,B. Balaji Naik,Balram Marathi,Uday B. Desai
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:23: 100549-100549 被引量:22
标识
DOI:10.1016/j.rsase.2021.100549
摘要

Regular monitoring is worthwhile to maintain a healthy crop. Historically, the manual observation was used to monitor crops, which is time-consuming and often costly. The recent boom in the development of Unmanned Aerial Vehicles (UAVs) has established a quick and easy way to monitor crops. UAVs can cover a wide area in a few minutes and obtain useful crop information with different sensors such as RGB, multispectral, hyperspectral cameras. Simultaneously, Convolutional Neural Networks (CNNs) have been effectively used for various vision-based agricultural monitoring activities, such as flower detection, fruit counting, and yield estimation. However, Convolutional Neural Network (CNN) requires a massive amount of labeled data for training, which is not always easy to obtain. Especially in agriculture, generating labeled datasets is time-consuming and exhaustive since interest objects are typically small in size and large in number. This paper proposes a novel method using k-means clustering with adaptive thresholding for detecting maize crop tassels to address these issues. The qualitative and quantitative analysis of the proposed method reveals that our method performs close to reference approaches and has an advantage over computational complexity. The proposed method detected and counted tassels with precision: 0.97438, recall: 0.88132, and F1 Score: 0.92412. In addition, using maize tassel detection from UAV images as the task in this paper, we propose a semi-automatic image annotation method to create labeled datasets of the maize crop easily. Based on the proposed method, the developed tool can be used in conjunction with a machine learning model to provide initial annotations for a given image, modified further by the user. Our tool's performance analysis reveals promising savings in annotation time, enabling the rapid production of maize crop labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰发布了新的文献求助10
1秒前
利奥完成签到,获得积分10
1秒前
乐乐应助Potato123123采纳,获得10
1秒前
科研通AI6应助Cyber_relic采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
TulIP完成签到,获得积分10
2秒前
脑洞疼应助yundanli采纳,获得10
3秒前
科研通AI6应助现代的天与采纳,获得12
4秒前
浩浩浩完成签到,获得积分10
4秒前
是容许鸭完成签到 ,获得积分10
4秒前
4秒前
xiaoshuang发布了新的文献求助10
4秒前
安婷fly发布了新的文献求助10
5秒前
子辰完成签到,获得积分10
5秒前
打打应助岁月旧曾谙采纳,获得10
5秒前
GU发布了新的文献求助10
5秒前
一天一首完成签到,获得积分10
5秒前
QMCL完成签到,获得积分10
6秒前
6秒前
FashionBoy应助疯狂大脑壳采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
LittleHu完成签到,获得积分20
7秒前
舒心的芮发布了新的文献求助10
7秒前
7秒前
啵萝味儿的奶盖完成签到 ,获得积分10
7秒前
dingdang完成签到,获得积分10
8秒前
小鸡快跑完成签到,获得积分10
9秒前
英俊的铭应助Quhang采纳,获得10
9秒前
9秒前
科研通AI6应助观察者采纳,获得10
9秒前
黎L完成签到,获得积分10
9秒前
10秒前
10秒前
上官若男应助bryan.yuan采纳,获得10
11秒前
赵怡然发布了新的文献求助10
11秒前
v111完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108