Efficient Maize Tassel-Detection Method using UAV based remote sensing

计算机科学 卷积神经网络 人工智能 高光谱成像 多光谱图像 模式识别(心理学) RGB颜色模型 阈值 任务(项目管理) 计算机视觉 图像(数学) 经济 管理
作者
Ajay Kumar,Sai Vikas Desai,Vineeth N Balasubramanian,P. Rajalakshmi,Wei Guo,B. Balaji Naik,Balram Marathi,Uday B. Desai
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:23: 100549-100549 被引量:22
标识
DOI:10.1016/j.rsase.2021.100549
摘要

Regular monitoring is worthwhile to maintain a healthy crop. Historically, the manual observation was used to monitor crops, which is time-consuming and often costly. The recent boom in the development of Unmanned Aerial Vehicles (UAVs) has established a quick and easy way to monitor crops. UAVs can cover a wide area in a few minutes and obtain useful crop information with different sensors such as RGB, multispectral, hyperspectral cameras. Simultaneously, Convolutional Neural Networks (CNNs) have been effectively used for various vision-based agricultural monitoring activities, such as flower detection, fruit counting, and yield estimation. However, Convolutional Neural Network (CNN) requires a massive amount of labeled data for training, which is not always easy to obtain. Especially in agriculture, generating labeled datasets is time-consuming and exhaustive since interest objects are typically small in size and large in number. This paper proposes a novel method using k-means clustering with adaptive thresholding for detecting maize crop tassels to address these issues. The qualitative and quantitative analysis of the proposed method reveals that our method performs close to reference approaches and has an advantage over computational complexity. The proposed method detected and counted tassels with precision: 0.97438, recall: 0.88132, and F1 Score: 0.92412. In addition, using maize tassel detection from UAV images as the task in this paper, we propose a semi-automatic image annotation method to create labeled datasets of the maize crop easily. Based on the proposed method, the developed tool can be used in conjunction with a machine learning model to provide initial annotations for a given image, modified further by the user. Our tool's performance analysis reveals promising savings in annotation time, enabling the rapid production of maize crop labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎发布了新的文献求助10
刚刚
1秒前
龙飞凤舞完成签到,获得积分0
1秒前
1秒前
1秒前
1秒前
1秒前
贪玩半雪发布了新的文献求助10
2秒前
丘比特应助无辜玉米采纳,获得10
2秒前
2秒前
酷波er应助高健晨采纳,获得10
3秒前
sw完成签到,获得积分10
3秒前
Kenzonvay完成签到,获得积分10
4秒前
Cyrus完成签到,获得积分10
4秒前
4秒前
君莫笑完成签到,获得积分10
4秒前
张益达完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
meimei发布了新的文献求助10
6秒前
6秒前
大模型应助阿龙采纳,获得10
7秒前
赵耀发布了新的文献求助10
7秒前
wuxunxun2015发布了新的文献求助10
7秒前
nffl发布了新的文献求助20
7秒前
8秒前
科研通AI6应助赤侯采纳,获得10
8秒前
无奈的迎夏完成签到,获得积分10
8秒前
搜集达人应助WuYujie采纳,获得10
8秒前
可爱的函函应助岛err采纳,获得10
9秒前
Lucas应助lily采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
123发布了新的文献求助10
9秒前
下雨天完成签到,获得积分10
10秒前
cnmkyt完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597483
求助须知:如何正确求助?哪些是违规求助? 4682912
关于积分的说明 14827567
捐赠科研通 4660738
什么是DOI,文献DOI怎么找? 2536633
邀请新用户注册赠送积分活动 1504244
关于科研通互助平台的介绍 1470182