Efficient Maize Tassel-Detection Method using UAV based remote sensing

计算机科学 卷积神经网络 人工智能 高光谱成像 多光谱图像 模式识别(心理学) RGB颜色模型 阈值 任务(项目管理) 计算机视觉 图像(数学) 管理 经济
作者
Ajay Kumar,Sai Vikas Desai,Vineeth N Balasubramanian,P. Rajalakshmi,Wei Guo,B. Balaji Naik,Balram Marathi,Uday B. Desai
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier BV]
卷期号:23: 100549-100549 被引量:22
标识
DOI:10.1016/j.rsase.2021.100549
摘要

Regular monitoring is worthwhile to maintain a healthy crop. Historically, the manual observation was used to monitor crops, which is time-consuming and often costly. The recent boom in the development of Unmanned Aerial Vehicles (UAVs) has established a quick and easy way to monitor crops. UAVs can cover a wide area in a few minutes and obtain useful crop information with different sensors such as RGB, multispectral, hyperspectral cameras. Simultaneously, Convolutional Neural Networks (CNNs) have been effectively used for various vision-based agricultural monitoring activities, such as flower detection, fruit counting, and yield estimation. However, Convolutional Neural Network (CNN) requires a massive amount of labeled data for training, which is not always easy to obtain. Especially in agriculture, generating labeled datasets is time-consuming and exhaustive since interest objects are typically small in size and large in number. This paper proposes a novel method using k-means clustering with adaptive thresholding for detecting maize crop tassels to address these issues. The qualitative and quantitative analysis of the proposed method reveals that our method performs close to reference approaches and has an advantage over computational complexity. The proposed method detected and counted tassels with precision: 0.97438, recall: 0.88132, and F1 Score: 0.92412. In addition, using maize tassel detection from UAV images as the task in this paper, we propose a semi-automatic image annotation method to create labeled datasets of the maize crop easily. Based on the proposed method, the developed tool can be used in conjunction with a machine learning model to provide initial annotations for a given image, modified further by the user. Our tool's performance analysis reveals promising savings in annotation time, enabling the rapid production of maize crop labeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜代亦关注了科研通微信公众号
刚刚
L77完成签到,获得积分0
刚刚
刚刚
1秒前
笨鸟先飞完成签到 ,获得积分10
1秒前
蘅大爷发布了新的文献求助10
1秒前
完美的雪旋完成签到,获得积分10
1秒前
2秒前
千xi完成签到,获得积分10
2秒前
shuyi发布了新的文献求助10
2秒前
fei完成签到,获得积分10
2秒前
百甲完成签到,获得积分10
3秒前
3秒前
wanci发布了新的文献求助10
3秒前
笨笨山芙完成签到 ,获得积分10
3秒前
Loooong完成签到,获得积分0
3秒前
大个应助呆呆采纳,获得10
3秒前
Mine发布了新的文献求助10
4秒前
kong发布了新的文献求助10
4秒前
奶黄包应助有魅力勒采纳,获得30
4秒前
5秒前
呵呵完成签到,获得积分10
5秒前
123lx完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
lianyang发布了新的文献求助10
6秒前
无花果应助竹马子采纳,获得10
8秒前
8秒前
星辰迷殇完成签到,获得积分10
8秒前
hopen完成签到,获得积分10
9秒前
9秒前
9秒前
Lucas应助奥特曼采纳,获得10
9秒前
小童完成签到,获得积分10
11秒前
饱满含玉完成签到,获得积分10
11秒前
努力搞科研完成签到,获得积分10
11秒前
11秒前
007发布了新的文献求助10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926