Efficient Maize Tassel-Detection Method using UAV based remote sensing

计算机科学 卷积神经网络 人工智能 高光谱成像 多光谱图像 模式识别(心理学) RGB颜色模型 阈值 任务(项目管理) 计算机视觉 图像(数学) 管理 经济
作者
Ajay Kumar,Sai Vikas Desai,Vineeth N Balasubramanian,P. Rajalakshmi,Wei Guo,B. Balaji Naik,Balram Marathi,Uday B. Desai
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:23: 100549-100549 被引量:22
标识
DOI:10.1016/j.rsase.2021.100549
摘要

Regular monitoring is worthwhile to maintain a healthy crop. Historically, the manual observation was used to monitor crops, which is time-consuming and often costly. The recent boom in the development of Unmanned Aerial Vehicles (UAVs) has established a quick and easy way to monitor crops. UAVs can cover a wide area in a few minutes and obtain useful crop information with different sensors such as RGB, multispectral, hyperspectral cameras. Simultaneously, Convolutional Neural Networks (CNNs) have been effectively used for various vision-based agricultural monitoring activities, such as flower detection, fruit counting, and yield estimation. However, Convolutional Neural Network (CNN) requires a massive amount of labeled data for training, which is not always easy to obtain. Especially in agriculture, generating labeled datasets is time-consuming and exhaustive since interest objects are typically small in size and large in number. This paper proposes a novel method using k-means clustering with adaptive thresholding for detecting maize crop tassels to address these issues. The qualitative and quantitative analysis of the proposed method reveals that our method performs close to reference approaches and has an advantage over computational complexity. The proposed method detected and counted tassels with precision: 0.97438, recall: 0.88132, and F1 Score: 0.92412. In addition, using maize tassel detection from UAV images as the task in this paper, we propose a semi-automatic image annotation method to create labeled datasets of the maize crop easily. Based on the proposed method, the developed tool can be used in conjunction with a machine learning model to provide initial annotations for a given image, modified further by the user. Our tool's performance analysis reveals promising savings in annotation time, enabling the rapid production of maize crop labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的乐儿完成签到,获得积分10
1秒前
sswbzh应助风清扬采纳,获得50
2秒前
2秒前
2秒前
正念完成签到,获得积分10
3秒前
Orange应助心灵美的小伙采纳,获得10
3秒前
3秒前
3秒前
3秒前
寒水沉烟完成签到,获得积分10
3秒前
3秒前
充电宝应助九九采纳,获得10
4秒前
4秒前
怕黑寻双完成签到,获得积分10
4秒前
4秒前
4秒前
orixero应助王硕硕采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
llhh2024发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
csy完成签到,获得积分10
8秒前
脱锦涛发布了新的文献求助10
8秒前
曹小曹发布了新的文献求助10
8秒前
9秒前
呆萌发布了新的文献求助10
9秒前
小蘑菇应助遇晴采纳,获得10
10秒前
10秒前
天天快乐应助小狗采纳,获得10
10秒前
10秒前
白瑾发布了新的文献求助10
10秒前
10秒前
alex发布了新的文献求助10
11秒前
vigour发布了新的文献求助10
11秒前
11秒前
12秒前
csy发布了新的文献求助10
12秒前
小Xiao完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894