Efficient Maize Tassel-Detection Method using UAV based remote sensing

计算机科学 卷积神经网络 人工智能 高光谱成像 多光谱图像 模式识别(心理学) RGB颜色模型 阈值 任务(项目管理) 计算机视觉 图像(数学) 经济 管理
作者
Ajay Kumar,Sai Vikas Desai,Vineeth N Balasubramanian,P. Rajalakshmi,Wei Guo,B. Balaji Naik,Balram Marathi,Uday B. Desai
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:23: 100549-100549 被引量:22
标识
DOI:10.1016/j.rsase.2021.100549
摘要

Regular monitoring is worthwhile to maintain a healthy crop. Historically, the manual observation was used to monitor crops, which is time-consuming and often costly. The recent boom in the development of Unmanned Aerial Vehicles (UAVs) has established a quick and easy way to monitor crops. UAVs can cover a wide area in a few minutes and obtain useful crop information with different sensors such as RGB, multispectral, hyperspectral cameras. Simultaneously, Convolutional Neural Networks (CNNs) have been effectively used for various vision-based agricultural monitoring activities, such as flower detection, fruit counting, and yield estimation. However, Convolutional Neural Network (CNN) requires a massive amount of labeled data for training, which is not always easy to obtain. Especially in agriculture, generating labeled datasets is time-consuming and exhaustive since interest objects are typically small in size and large in number. This paper proposes a novel method using k-means clustering with adaptive thresholding for detecting maize crop tassels to address these issues. The qualitative and quantitative analysis of the proposed method reveals that our method performs close to reference approaches and has an advantage over computational complexity. The proposed method detected and counted tassels with precision: 0.97438, recall: 0.88132, and F1 Score: 0.92412. In addition, using maize tassel detection from UAV images as the task in this paper, we propose a semi-automatic image annotation method to create labeled datasets of the maize crop easily. Based on the proposed method, the developed tool can be used in conjunction with a machine learning model to provide initial annotations for a given image, modified further by the user. Our tool's performance analysis reveals promising savings in annotation time, enabling the rapid production of maize crop labeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nicole完成签到,获得积分10
刚刚
QQ完成签到,获得积分10
1秒前
2秒前
xiaochao完成签到,获得积分10
2秒前
6秒前
6秒前
9秒前
不懈奋进应助dablack采纳,获得30
13秒前
隐形曼青应助fang采纳,获得10
14秒前
脑洞疼应助枯木逢生i采纳,获得10
14秒前
虚心以丹完成签到,获得积分10
15秒前
李爱国应助mbf采纳,获得30
16秒前
16秒前
123完成签到,获得积分10
16秒前
19秒前
快乐小子发布了新的文献求助10
19秒前
子车茗应助小李子采纳,获得100
22秒前
无花果应助amupf采纳,获得10
23秒前
23秒前
樱桃儿完成签到,获得积分10
23秒前
NNsun完成签到 ,获得积分10
23秒前
牛拉犁完成签到 ,获得积分10
24秒前
29秒前
32秒前
32秒前
科目三应助super chan采纳,获得10
33秒前
樱桃儿发布了新的文献求助10
33秒前
33秒前
桐桐应助xixi很困采纳,获得10
33秒前
ZN发布了新的文献求助10
35秒前
上官若男应助李西瓜采纳,获得10
37秒前
Cathy发布了新的文献求助30
37秒前
40秒前
科研通AI2S应助aikeyan采纳,获得10
40秒前
Polymer72应助aikeyan采纳,获得10
40秒前
大力的代荷完成签到,获得积分10
40秒前
40秒前
爆米花应助在远方采纳,获得10
42秒前
111发布了新的文献求助10
42秒前
所所应助柳叶小弯刀采纳,获得10
43秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343491
求助须知:如何正确求助?哪些是违规求助? 2970529
关于积分的说明 8644400
捐赠科研通 2650596
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661536