Efficient Maize Tassel-Detection Method using UAV based remote sensing

计算机科学 卷积神经网络 人工智能 高光谱成像 多光谱图像 模式识别(心理学) RGB颜色模型 阈值 任务(项目管理) 计算机视觉 图像(数学) 经济 管理
作者
Ajay Kumar,Sai Vikas Desai,Vineeth N Balasubramanian,P. Rajalakshmi,Wei Guo,B. Balaji Naik,Balram Marathi,Uday B. Desai
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:23: 100549-100549 被引量:22
标识
DOI:10.1016/j.rsase.2021.100549
摘要

Regular monitoring is worthwhile to maintain a healthy crop. Historically, the manual observation was used to monitor crops, which is time-consuming and often costly. The recent boom in the development of Unmanned Aerial Vehicles (UAVs) has established a quick and easy way to monitor crops. UAVs can cover a wide area in a few minutes and obtain useful crop information with different sensors such as RGB, multispectral, hyperspectral cameras. Simultaneously, Convolutional Neural Networks (CNNs) have been effectively used for various vision-based agricultural monitoring activities, such as flower detection, fruit counting, and yield estimation. However, Convolutional Neural Network (CNN) requires a massive amount of labeled data for training, which is not always easy to obtain. Especially in agriculture, generating labeled datasets is time-consuming and exhaustive since interest objects are typically small in size and large in number. This paper proposes a novel method using k-means clustering with adaptive thresholding for detecting maize crop tassels to address these issues. The qualitative and quantitative analysis of the proposed method reveals that our method performs close to reference approaches and has an advantage over computational complexity. The proposed method detected and counted tassels with precision: 0.97438, recall: 0.88132, and F1 Score: 0.92412. In addition, using maize tassel detection from UAV images as the task in this paper, we propose a semi-automatic image annotation method to create labeled datasets of the maize crop easily. Based on the proposed method, the developed tool can be used in conjunction with a machine learning model to provide initial annotations for a given image, modified further by the user. Our tool's performance analysis reveals promising savings in annotation time, enabling the rapid production of maize crop labeled datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助雷培采纳,获得10
1秒前
1秒前
actor2006发布了新的文献求助100
1秒前
1秒前
1秒前
1秒前
无花果应助FFFF采纳,获得30
1秒前
tantan完成签到,获得积分10
2秒前
踏实采波完成签到,获得积分10
3秒前
sw发布了新的文献求助10
4秒前
4秒前
weita完成签到,获得积分10
5秒前
共享精神应助不吃橘子采纳,获得10
6秒前
6秒前
在水一方应助a7489420采纳,获得10
6秒前
Lucas应助问凝采纳,获得10
7秒前
重要的天空完成签到,获得积分10
8秒前
ren发布了新的文献求助10
8秒前
斯文败类应助天才采纳,获得10
8秒前
小蘑菇应助勤劳绿柳采纳,获得10
8秒前
黑马王子发布了新的文献求助10
11秒前
姜露萍发布了新的文献求助10
11秒前
天天快乐应助科研小蔡采纳,获得10
11秒前
sunstar发布了新的文献求助10
11秒前
12秒前
问凝完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
科研糊涂神完成签到,获得积分10
13秒前
cc完成签到 ,获得积分10
13秒前
16秒前
17秒前
天天快乐应助yating采纳,获得10
17秒前
小蘑菇应助莘莘采纳,获得10
18秒前
19秒前
qqaeao完成签到,获得积分10
20秒前
20秒前
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142