清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Hybrid Prediction Method for Realistic Network Traffic With Temporal Convolutional Network and LSTM

计算机科学 时间序列 人工智能 卷积神经网络 数据挖掘 滤波器(信号处理) 噪音(视频) 期限(时间) 系列(地层学) 人工神经网络 机器学习 循环神经网络 量子力学 生物 图像(数学) 物理 古生物学 计算机视觉
作者
Jing Bi,Xiang Zhang,Haitao Yuan,Jia Zhang,MengChu Zhou
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1869-1879 被引量:147
标识
DOI:10.1109/tase.2021.3077537
摘要

Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of a network and analyze its health status. In recent years, neural networks have been proved suitable to predict time series data, represented by the model of a long short-term memory (LSTM) neural network and a temporal convolutional network (TCN). This article proposes a novel hybrid prediction method named SG and TCN-based LSTM (ST-LSTM) for such network traffic prediction, which synergistically combines the power of the Savitzky–Golay (SG) filter, the TCN, as well as the LSTM. ST-LSTM employs a three-phase end-to-end methodology serving time series prediction. It first eliminates noise in raw data using the SG filter, then extracts short-term features from sequences applying the TCN, and then captures the long-term dependence in the data exploiting the LSTM. Experimental results over real-world datasets demonstrate that the proposed ST-LSTM outperforms state-of-the-art algorithms in terms of prediction accuracy. Note to Practitioners —This work considers real-time and high-accuracy prediction of network traffic. It is highly important to well predict network traffic by capturing long-term dependence and effectively extracting high- and low-frequency information from time series data. Yet, it is a big challenge to achieve it because there are unstable characteristics and strong nonlinear features in the network traffic due to continuous expansion of network scale and fast emergence of new services. Current prediction methods usually have oversimplified theoretical assumptions, need significant time and memory, or suffer problems of gradient disappearance or early convergence. Thus, they fail to effectively capture the nonlinear characteristics of large-scale network sequences. This work proposes a hybrid prediction method named SG and TCN-based LSTM (ST-LSTM), which integrates the merits of the Savitzky–Golay filter, the temporal convolutional network (TCN), and the long short-term memory (LSTM), serving as smoothing time series, capturing short-term local features, and capturing long-term dependence, respectively. Experimental results based on the real-life dataset demonstrate that it achieves better prediction accuracy than its state-of-the-art peers, including the TCN and the LSTM. It can be readily implemented and deployed in many real-life industrial areas including smart city, edge computing, cloud computing, and data centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助白华苍松采纳,获得10
1秒前
从容芮完成签到,获得积分0
2秒前
田田完成签到 ,获得积分10
8秒前
lyj完成签到 ,获得积分10
22秒前
26秒前
科研狗完成签到 ,获得积分10
28秒前
Sunny完成签到,获得积分10
29秒前
小二郎应助白华苍松采纳,获得10
55秒前
科研通AI2S应助cy0824采纳,获得10
56秒前
朽木完成签到 ,获得积分10
1分钟前
HEIKU应助雪山飞龙采纳,获得10
1分钟前
热带蚂蚁完成签到 ,获得积分10
1分钟前
1分钟前
jamwu发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助白华苍松采纳,获得10
1分钟前
JamesPei应助jamwu采纳,获得10
1分钟前
gobi完成签到 ,获得积分10
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
四叶草完成签到 ,获得积分10
1分钟前
龙飞凤舞完成签到,获得积分10
2分钟前
优雅盼海发布了新的文献求助10
2分钟前
mashibeo完成签到,获得积分10
2分钟前
Jenny完成签到,获得积分10
2分钟前
大个应助优雅盼海采纳,获得10
2分钟前
2分钟前
优雅盼海完成签到,获得积分20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Jasper应助妮妮妮采纳,获得10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
2分钟前
orixero应助忐忑的黑猫采纳,获得10
2分钟前
葫芦芦芦完成签到 ,获得积分10
3分钟前
是小小李哇完成签到 ,获得积分10
3分钟前
3分钟前
lmy完成签到 ,获得积分10
3分钟前
vbnn完成签到 ,获得积分10
3分钟前
3分钟前
轩辕白竹完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417624
求助须知:如何正确求助?哪些是违规求助? 3019270
关于积分的说明 8886910
捐赠科研通 2706747
什么是DOI,文献DOI怎么找? 1484445
科研通“疑难数据库(出版商)”最低求助积分说明 685989
邀请新用户注册赠送积分活动 681168