Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia

髓系白血病 发病机制 生物 白血病 癌症研究 生物信息学 髓样 医学 计算生物学 计算机科学 肿瘤科 免疫学
作者
Hassan Awada,Arda Durmaz,Carmelo Gurnari,Ashwin Kishtagari,Manja Meggendorfer,Cassandra M Kerr,Teodora Kuzmanovic,Jibran Durrani,Jacob Shreve,Yasunobu Nagata,Tomas Radivoyevitch,Anjali S. Advani,Farhad Ravandi,Hetty E. Carraway,Aziz Nazha,Claudia Haferlach,Yogen Saunthararajah,Jacob G. Scott,Valeria Visconte,Hagop M. Kantarjian,Tapan M. Kadia,Mikkael A. Sekeres,Torsten Haferlach,Jaroslaw P. Maciejewski
出处
期刊:Blood [Elsevier BV]
卷期号:138 (19): 1885-1895 被引量:9
标识
DOI:10.1182/blood.2020010603
摘要

Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology, and prototypic genetic founder lesions define only a small proportion of AML patients. The historical subdivision of primary/de novo AML and secondary AML has shown to variably correlate with genetic patterns. The combinatorial complexity and heterogeneity of AML genomic architecture may have thus far precluded genomic-based subclassification to identify distinct molecularly defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and gene sequencing data from a multicenter cohort of 6788 AML patients that were analyzed using standard and machine learning methods to generate a novel AML molecular subclassification with biologic correlates corresponding to underlying pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy when attempting to use molecular patterns to predict traditional pathomorphologic AML classifications. We performed unsupervised analysis by applying the Bayesian latent class method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each cluster were extracted and resulted in 97% cross-validation accuracy when used for genomic subclassification. Subclasses of AML defined by molecular signatures overlapped current pathomorphologic and clinically defined AML subtypes. We internally and externally validated our results and share an open-access molecular classification scheme for AML patients. Although the heterogeneity inherent in the genomic changes across nearly 7000 AML patients was too vast for traditional prediction methods, machine learning methods allowed for the definition of novel genomic AML subclasses, indicating that traditional pathomorphologic definitions may be less reflective of overlapping pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
调皮正豪发布了新的文献求助10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
SciGPT应助Yeee采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
Gin发布了新的文献求助10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
wjjokk应助科研通管家采纳,获得10
2秒前
wop111应助科研通管家采纳,获得20
2秒前
qc应助科研通管家采纳,获得10
2秒前
aimeejjr完成签到,获得积分10
2秒前
打打应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得50
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
加缪应助科研通管家采纳,获得10
3秒前
小情绪应助科研通管家采纳,获得40
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885855
求助须知:如何正确求助?哪些是违规求助? 4170775
关于积分的说明 12942531
捐赠科研通 3931395
什么是DOI,文献DOI怎么找? 2157039
邀请新用户注册赠送积分活动 1175458
关于科研通互助平台的介绍 1080012