Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia

髓系白血病 发病机制 生物 白血病 癌症研究 生物信息学 髓样 医学 计算生物学 计算机科学 肿瘤科 免疫学
作者
Hassan Awada,Arda Durmaz,Carmelo Gurnari,Ashwin Kishtagari,Manja Meggendorfer,Cassandra M Kerr,Teodora Kuzmanovic,Jibran Durrani,Jacob Shreve,Yasunobu Nagata,Tomas Radivoyevitch,Anjali S. Advani,Farhad Ravandi,Hetty E. Carraway,Aziz Nazha,Claudia Haferlach,Yogen Saunthararajah,Jacob G. Scott,Valeria Visconte,Hagop M. Kantarjian,Tapan M. Kadia,Mikkael A. Sekeres,Torsten Haferlach,Jaroslaw P. Maciejewski
出处
期刊:Blood [Elsevier BV]
卷期号:138 (19): 1885-1895 被引量:9
标识
DOI:10.1182/blood.2020010603
摘要

Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology, and prototypic genetic founder lesions define only a small proportion of AML patients. The historical subdivision of primary/de novo AML and secondary AML has shown to variably correlate with genetic patterns. The combinatorial complexity and heterogeneity of AML genomic architecture may have thus far precluded genomic-based subclassification to identify distinct molecularly defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and gene sequencing data from a multicenter cohort of 6788 AML patients that were analyzed using standard and machine learning methods to generate a novel AML molecular subclassification with biologic correlates corresponding to underlying pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy when attempting to use molecular patterns to predict traditional pathomorphologic AML classifications. We performed unsupervised analysis by applying the Bayesian latent class method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each cluster were extracted and resulted in 97% cross-validation accuracy when used for genomic subclassification. Subclasses of AML defined by molecular signatures overlapped current pathomorphologic and clinically defined AML subtypes. We internally and externally validated our results and share an open-access molecular classification scheme for AML patients. Although the heterogeneity inherent in the genomic changes across nearly 7000 AML patients was too vast for traditional prediction methods, machine learning methods allowed for the definition of novel genomic AML subclasses, indicating that traditional pathomorphologic definitions may be less reflective of overlapping pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助林烯采纳,获得10
1秒前
goufufu完成签到,获得积分10
1秒前
2秒前
2秒前
书虫完成签到,获得积分10
2秒前
木马完成签到,获得积分10
2秒前
wxy发布了新的文献求助10
3秒前
direstyles完成签到,获得积分10
3秒前
nnnn完成签到,获得积分10
3秒前
na完成签到,获得积分10
4秒前
4秒前
土豆完成签到,获得积分10
4秒前
joshar完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
lalala发布了新的文献求助10
5秒前
科研混子完成签到,获得积分10
6秒前
wanci应助刘旭阳采纳,获得10
7秒前
海绵宝宝发布了新的文献求助10
7秒前
7秒前
彪壮的冰双完成签到,获得积分10
7秒前
7秒前
8秒前
STAN发布了新的文献求助10
8秒前
wangxiaobin完成签到,获得积分10
8秒前
曹great发布了新的文献求助10
8秒前
9秒前
9秒前
nnnn发布了新的文献求助60
10秒前
10秒前
10秒前
啦啦啦完成签到,获得积分10
10秒前
wangjie77发布了新的文献求助20
10秒前
大橙子发布了新的文献求助10
11秒前
浅野清完成签到 ,获得积分20
11秒前
11秒前
13秒前
啦啦啦发布了新的文献求助10
13秒前
斯文败类应助鲜艳的访风采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993