Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia

髓系白血病 发病机制 生物 白血病 癌症研究 生物信息学 髓样 医学 计算生物学 计算机科学 肿瘤科 免疫学
作者
Hassan Awada,Arda Durmaz,Carmelo Gurnari,Ashwin Kishtagari,Manja Meggendorfer,Cassandra M Kerr,Teodora Kuzmanovic,Jibran Durrani,Jacob Shreve,Yasunobu Nagata,Tomas Radivoyevitch,Anjali S. Advani,Farhad Ravandi,Hetty E. Carraway,Aziz Nazha,Claudia Haferlach,Yogen Saunthararajah,Jacob G. Scott,Valeria Visconte,Hagop M. Kantarjian,Tapan M. Kadia,Mikkael A. Sekeres,Torsten Haferlach,Jaroslaw P. Maciejewski
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (19): 1885-1895 被引量:9
标识
DOI:10.1182/blood.2020010603
摘要

Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology, and prototypic genetic founder lesions define only a small proportion of AML patients. The historical subdivision of primary/de novo AML and secondary AML has shown to variably correlate with genetic patterns. The combinatorial complexity and heterogeneity of AML genomic architecture may have thus far precluded genomic-based subclassification to identify distinct molecularly defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and gene sequencing data from a multicenter cohort of 6788 AML patients that were analyzed using standard and machine learning methods to generate a novel AML molecular subclassification with biologic correlates corresponding to underlying pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy when attempting to use molecular patterns to predict traditional pathomorphologic AML classifications. We performed unsupervised analysis by applying the Bayesian latent class method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each cluster were extracted and resulted in 97% cross-validation accuracy when used for genomic subclassification. Subclasses of AML defined by molecular signatures overlapped current pathomorphologic and clinically defined AML subtypes. We internally and externally validated our results and share an open-access molecular classification scheme for AML patients. Although the heterogeneity inherent in the genomic changes across nearly 7000 AML patients was too vast for traditional prediction methods, machine learning methods allowed for the definition of novel genomic AML subclasses, indicating that traditional pathomorphologic definitions may be less reflective of overlapping pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
磁控达人完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
东方元语应助无极微光采纳,获得20
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助佚名采纳,获得10
5秒前
xx完成签到,获得积分10
5秒前
galaxy发布了新的文献求助10
5秒前
Qinzhiyuan1990关注了科研通微信公众号
7秒前
小巧富发布了新的文献求助10
7秒前
无边落木萧萧下完成签到,获得积分10
7秒前
ylyla发布了新的文献求助10
8秒前
sailor2k发布了新的文献求助10
8秒前
歪比巴卜完成签到 ,获得积分10
9秒前
科研通AI6应助安详的三颜采纳,获得10
9秒前
22335566发布了新的文献求助10
10秒前
lynn发布了新的文献求助10
10秒前
Ava应助kytzh采纳,获得10
10秒前
情怀应助Aprilapple采纳,获得10
13秒前
豆豆完成签到 ,获得积分10
13秒前
13秒前
111123发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
18秒前
Niceyuan完成签到,获得积分20
19秒前
19秒前
Orange应助九日橙采纳,获得30
19秒前
21秒前
拼搏的帽子完成签到 ,获得积分10
21秒前
就在咫尺之间完成签到 ,获得积分10
21秒前
MizzZeus完成签到,获得积分10
22秒前
22秒前
青儿完成签到,获得积分20
22秒前
传奇3应助Niceyuan采纳,获得10
23秒前
lw完成签到,获得积分20
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453983
求助须知:如何正确求助?哪些是违规求助? 4561429
关于积分的说明 14282591
捐赠科研通 4485414
什么是DOI,文献DOI怎么找? 2456715
邀请新用户注册赠送积分活动 1447394
关于科研通互助平台的介绍 1422730