A method for predicting hobbing tool wear based on CNC real-time monitoring data and deep learning

滚齿 刀具磨损 深信不疑网络 过程(计算) 人工神经网络 机械加工 人工智能 计算机科学 深度学习 工程类 机器学习 机械工程 操作系统
作者
Dashuang Wang,Rongjing Hong,Xiaochuan Lin
出处
期刊:Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology [Elsevier BV]
卷期号:72: 847-857 被引量:21
标识
DOI:10.1016/j.precisioneng.2021.08.010
摘要

Intelligent monitoring and diagnosis of tool status are of great significance for improving the manufacturing efficiency and accuracy of the workpiece. It is difficult to quickly and accurately predict the wear state of worm gear hob under different working conditions. This paper proposes a novel approach to predict hob wear status based on CNC real-time monitoring data. Based on the open platform communication unified architecture (OPC UA) technology and orthogonal test, the machine data of motor power, current, etc. related to tool wear are collected online in the worm gear machining process. And then, an improved deep belief network (DBN) is used to generate a tool wear model by training data. A growing DBN with transfer learning is introduced to automatically decide its best model structure, which can accelerate its learning process, improve training efficiency and model performance. The experiment results show that the proposed method can effectively predict hob wear status under multi-cutting conditions. To show the advantages of the proposed approach, the performance of the DBN is compared with the traditional back propagation neural network (BP) method in terms of the mean-squared error (MSE). The compared results show that this tool wear prediction method has better prediction accuracy than the traditional BP method during worm gear hobbing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
52hERTZ关注了科研通微信公众号
1秒前
2秒前
222发布了新的文献求助10
2秒前
汉堡包应助gyl采纳,获得10
3秒前
6秒前
7秒前
半分甜完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
大壮应助gyl采纳,获得10
9秒前
10秒前
222关闭了222文献求助
11秒前
赶路人发布了新的文献求助30
11秒前
13秒前
13秒前
52hERTZ发布了新的文献求助10
14秒前
CipherSage应助无奈的书双采纳,获得10
14秒前
弥生妖刀应助麻师长采纳,获得10
14秒前
述安发布了新的文献求助10
16秒前
18秒前
无花果应助Vanessa采纳,获得10
19秒前
nebula应助蓝天白云采纳,获得10
20秒前
科研通AI5应助蓝天白云采纳,获得30
20秒前
传奇3应助蓝天白云采纳,获得10
20秒前
21秒前
21秒前
小富婆完成签到 ,获得积分10
22秒前
YamDaamCaa应助漂亮的抽屉采纳,获得30
23秒前
清歌浊酒发布了新的文献求助10
24秒前
无奈的书双完成签到,获得积分10
25秒前
1234完成签到 ,获得积分10
25秒前
26秒前
hgs完成签到,获得积分10
26秒前
silence完成签到,获得积分10
26秒前
wdfddzh发布了新的文献求助10
28秒前
久久阳光完成签到,获得积分10
28秒前
29秒前
大雪完成签到 ,获得积分10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578