MOF-Templated Sulfurization of Atomically Dispersed Manganese Catalysts Facilitating Electroreduction of CO2 to CO

材料科学 催化作用 化学工程 氧化锰 无机化学 电催化剂 纳米技术 电化学 电极 冶金 有机化学 物理化学 化学 工程类
作者
Hui‐Ying Tan,Sheng‐Chih Lin,Jiali Wang,Chia-Jui Chang,Shu‐Chih Haw,Kuo‐Hsin Lin,Li Duan Tsai,Hsiao‐Chien Chen,Hao Ming Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (44): 52134-52143 被引量:26
标识
DOI:10.1021/acsami.1c10059
摘要

To reach a carbon-neutral future, electrochemical CO2 reduction reaction (eCO2RR) has proven to be a strong candidate for the next-generation energy system. Among potential materials, single-atom catalysts (SACs) serve as a model to study the mechanism behind the reduction of CO2 to CO, given their well-defined active metal centers and structural simplicity. Moreover, using metal–organic frameworks (MOFs) as supports to anchor and stabilize central metal atoms, the common concern, metal aggregation, for SACs can be addressed well. Furthermore, with their turnability and designability, MOF-derived SACs can also extend the scope of research on SACs for the eCO2RR. Herein, we synthesize sulfurized MOF-derived Mn SACs to study effects of the S dopant on the eCO2RR. Using complementary characterization techniques, the metal moiety of the sulfurized MOF-derived Mn SACs (MnSA/SNC) is identified as MnN3S1. Compared with its non-sulfur-modified counterpart (MnSA/NC), the MnSA/SNC provides uniformly superior activity to produce CO. Specifically, a nearly 30% enhancement of Faradaic efficiency (F.E.) in CO production is observed, and the highest F.E. of approximately 70% is identified at −0.45 V. Through operando spectroscopic characterization, the probing results reveal that the overall enhancement of CO production on the MnSA/SNC is possibly caused by the S atom in the local MnN3S1 moiety, as the sulfur atom may induce the formation of S–O bonding to stabilize the critical intermediate, *COOH, for CO2-to-CO. Our results provide novel design insights into the field of SACs for the eCO2RR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助不二采纳,获得10
1秒前
中中中发布了新的文献求助10
1秒前
2秒前
搁浅发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
清脆的夜白完成签到,获得积分10
5秒前
充电宝应助辛勤的念双采纳,获得10
5秒前
所所应助是小王ya采纳,获得10
7秒前
7秒前
小女完成签到,获得积分20
7秒前
8秒前
悬铃木发布了新的文献求助30
8秒前
爱丽丝敏发布了新的文献求助10
9秒前
小二郎应助kingmantj采纳,获得10
9秒前
樊傲云发布了新的文献求助10
9秒前
科研通AI5应助俭朴的雁芙采纳,获得10
10秒前
11秒前
11秒前
Naonaoo完成签到,获得积分10
12秒前
12秒前
萧湘完成签到,获得积分10
13秒前
14秒前
烂漫的幻露完成签到,获得积分10
14秒前
是小王ya发布了新的文献求助10
15秒前
15秒前
鲤鱼青雪发布了新的文献求助10
16秒前
满学长发布了新的文献求助10
17秒前
17秒前
chenlihuan发布了新的文献求助10
17秒前
17秒前
打打应助GengYing采纳,获得10
18秒前
15884134873完成签到,获得积分10
18秒前
不二发布了新的文献求助10
18秒前
19秒前
三年半完成签到,获得积分10
19秒前
一拿完成签到,获得积分10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560386
求助须知:如何正确求助?哪些是违规求助? 3134484
关于积分的说明 9407578
捐赠科研通 2834649
什么是DOI,文献DOI怎么找? 1558173
邀请新用户注册赠送积分活动 727933
科研通“疑难数据库(出版商)”最低求助积分说明 716633