Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery

高光谱成像 油松 环境科学 遥感 卡帕 随机森林 植被(病理学) 马尾松 阶段(地层学) 林业 计算机科学 数学 人工智能 地理 植物 生物 医学 病理 几何学 古生物学
作者
Runsheng Yu,Lili Ren,Youqing Luo
出处
期刊:Forest Ecosystems [Springer Science+Business Media]
卷期号:8: 44-44 被引量:59
标识
DOI:10.1186/s40663-021-00328-6
摘要

Pine wilt disease (PWD) is a major ecological concern in China that has caused severe damage to millions of Chinese pines (Pinus tabulaeformis). To control the spread of PWD, it is necessary to develop an effective approach to detect its presence in the early stage of infection. One potential solution is the use of Unmanned Airborne Vehicle (UAV) based hyperspectral images (HIs). UAV-based HIs have high spatial and spectral resolution and can gather data rapidly, potentially enabling the effective monitoring of large forests. Despite this, few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine. To fill this gap, we used a Random Forest (RF) algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data (data directly collected from trees in the field). We compared relative accuracy of each of these data collection methods. We built our RF model using vegetation indices (VIs), red edge parameters (REPs), moisture indices (MIs), and their combination. We report several key results. For ground data, the model that combined all parameters (OA: 80.17%, Kappa: 0.73) performed better than VIs (OA: 75.21%, Kappa: 0.66), REPs (OA: 79.34%, Kappa: 0.67), and MIs (OA: 74.38%, Kappa: 0.65) in predicting the PWD stage of individual pine tree infection. REPs had the highest accuracy (OA: 80.33%, Kappa: 0.58) in distinguishing trees at the early stage of PWD from healthy trees. UAV-based HI data yielded similar results: the model combined VIs, REPs and MIs (OA: 74.38%, Kappa: 0.66) exhibited the highest accuracy in estimating the PWD stage of sampled trees, and REPs performed best in distinguishing healthy trees from trees at early stage of PWD (OA: 71.67%, Kappa: 0.40). Overall, our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage, although its accuracy must be improved before widespread use is practical. We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data. We believe that these results can be used to improve preventative measures in the control of PWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助司空晓山采纳,获得10
2秒前
大个应助无尘泪采纳,获得10
3秒前
陈晓真完成签到,获得积分10
4秒前
于其言完成签到,获得积分10
4秒前
架子猫完成签到,获得积分10
4秒前
CC完成签到,获得积分10
5秒前
逸之狐发布了新的文献求助10
5秒前
6秒前
yy完成签到,获得积分20
6秒前
仁爱的可乐完成签到,获得积分10
6秒前
Owen应助老张采纳,获得10
8秒前
LYSM完成签到,获得积分0
8秒前
8秒前
Troyelm发布了新的文献求助30
9秒前
NIDADI完成签到,获得积分10
9秒前
哎呦喂完成签到,获得积分10
9秒前
喜欢我阿尔托莉雅吗完成签到,获得积分10
10秒前
深情安青应助专一的平灵采纳,获得10
10秒前
阔达的无剑应助旧城以西采纳,获得10
10秒前
专一的惜霜完成签到,获得积分10
10秒前
11秒前
天天完成签到 ,获得积分20
12秒前
muyi发布了新的文献求助10
15秒前
123小九完成签到,获得积分10
15秒前
16秒前
17秒前
Qinghua完成签到,获得积分10
18秒前
开心完成签到,获得积分10
19秒前
小蘑菇应助坦率的匪采纳,获得10
19秒前
常大有发布了新的文献求助10
19秒前
pcr163应助飞飞飞采纳,获得50
21秒前
23秒前
JamesPei应助Li采纳,获得10
23秒前
奋斗蘑菇发布了新的文献求助10
23秒前
yang完成签到 ,获得积分10
23秒前
咕噜咕噜完成签到,获得积分10
24秒前
满怀完成签到,获得积分10
24秒前
不爱吃韭菜完成签到 ,获得积分10
27秒前
专一的平灵完成签到,获得积分10
27秒前
传奇3应助阳光的夏山采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958245
求助须知:如何正确求助?哪些是违规求助? 3504421
关于积分的说明 11118358
捐赠科研通 3235721
什么是DOI,文献DOI怎么找? 1788421
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582