Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery

高光谱成像 油松 环境科学 遥感 卡帕 随机森林 植被(病理学) 马尾松 阶段(地层学) 林业 计算机科学 数学 人工智能 地理 植物 生物 医学 古生物学 几何学 病理
作者
Runsheng Yu,Lili Ren,Youqing Luo
出处
期刊:Forest Ecosystems [Springer Nature]
卷期号:8: 44-44 被引量:59
标识
DOI:10.1186/s40663-021-00328-6
摘要

Pine wilt disease (PWD) is a major ecological concern in China that has caused severe damage to millions of Chinese pines (Pinus tabulaeformis). To control the spread of PWD, it is necessary to develop an effective approach to detect its presence in the early stage of infection. One potential solution is the use of Unmanned Airborne Vehicle (UAV) based hyperspectral images (HIs). UAV-based HIs have high spatial and spectral resolution and can gather data rapidly, potentially enabling the effective monitoring of large forests. Despite this, few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine. To fill this gap, we used a Random Forest (RF) algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data (data directly collected from trees in the field). We compared relative accuracy of each of these data collection methods. We built our RF model using vegetation indices (VIs), red edge parameters (REPs), moisture indices (MIs), and their combination. We report several key results. For ground data, the model that combined all parameters (OA: 80.17%, Kappa: 0.73) performed better than VIs (OA: 75.21%, Kappa: 0.66), REPs (OA: 79.34%, Kappa: 0.67), and MIs (OA: 74.38%, Kappa: 0.65) in predicting the PWD stage of individual pine tree infection. REPs had the highest accuracy (OA: 80.33%, Kappa: 0.58) in distinguishing trees at the early stage of PWD from healthy trees. UAV-based HI data yielded similar results: the model combined VIs, REPs and MIs (OA: 74.38%, Kappa: 0.66) exhibited the highest accuracy in estimating the PWD stage of sampled trees, and REPs performed best in distinguishing healthy trees from trees at early stage of PWD (OA: 71.67%, Kappa: 0.40). Overall, our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage, although its accuracy must be improved before widespread use is practical. We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data. We believe that these results can be used to improve preventative measures in the control of PWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达月亮完成签到,获得积分10
刚刚
小瓶盖完成签到 ,获得积分10
刚刚
i羽翼深蓝i完成签到,获得积分10
1秒前
无奈蛋挞发布了新的文献求助10
1秒前
LIJIngcan完成签到 ,获得积分10
1秒前
ZM完成签到,获得积分10
1秒前
3秒前
3秒前
xiaole发布了新的文献求助10
3秒前
玩命的平蓝完成签到,获得积分10
4秒前
4秒前
5秒前
asdfgh完成签到,获得积分10
6秒前
阔达月亮发布了新的文献求助10
7秒前
鳗鱼不尤完成签到,获得积分10
8秒前
urologistwzy应助nn采纳,获得20
9秒前
tinatian270完成签到,获得积分10
10秒前
asdfgh发布了新的文献求助10
10秒前
蟪蛄鸪发布了新的文献求助10
10秒前
xxxx完成签到,获得积分10
10秒前
chujun_cai完成签到 ,获得积分10
10秒前
hustscholar完成签到,获得积分10
11秒前
liuchang完成签到 ,获得积分10
11秒前
qinyuynip发布了新的文献求助10
11秒前
怎么会睡不醒完成签到 ,获得积分10
11秒前
12秒前
haoyunlai完成签到,获得积分10
12秒前
现代宝宝完成签到,获得积分10
12秒前
星辰大海应助爱听歌的沁采纳,获得10
12秒前
木子完成签到 ,获得积分10
12秒前
那儿完成签到,获得积分10
12秒前
Pursue完成签到 ,获得积分10
13秒前
载尘完成签到 ,获得积分10
13秒前
Rex完成签到,获得积分10
14秒前
TingWang完成签到,获得积分10
14秒前
刘刘完成签到 ,获得积分10
15秒前
玉宇琼楼完成签到 ,获得积分10
15秒前
大模型应助1234sxcv采纳,获得10
16秒前
MchemG应助ho采纳,获得30
16秒前
Zero完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325860
求助须知:如何正确求助?哪些是违规求助? 4466190
关于积分的说明 13895622
捐赠科研通 4358576
什么是DOI,文献DOI怎么找? 2394125
邀请新用户注册赠送积分活动 1387563
关于科研通互助平台的介绍 1358521