已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery

高光谱成像 油松 环境科学 遥感 卡帕 随机森林 植被(病理学) 马尾松 阶段(地层学) 林业 计算机科学 数学 人工智能 地理 植物 生物 医学 古生物学 几何学 病理
作者
Runsheng Yu,Lili Ren,Youqing Luo
出处
期刊:Forest Ecosystems [Springer Nature]
卷期号:8: 44-44 被引量:59
标识
DOI:10.1186/s40663-021-00328-6
摘要

Pine wilt disease (PWD) is a major ecological concern in China that has caused severe damage to millions of Chinese pines (Pinus tabulaeformis). To control the spread of PWD, it is necessary to develop an effective approach to detect its presence in the early stage of infection. One potential solution is the use of Unmanned Airborne Vehicle (UAV) based hyperspectral images (HIs). UAV-based HIs have high spatial and spectral resolution and can gather data rapidly, potentially enabling the effective monitoring of large forests. Despite this, few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine. To fill this gap, we used a Random Forest (RF) algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data (data directly collected from trees in the field). We compared relative accuracy of each of these data collection methods. We built our RF model using vegetation indices (VIs), red edge parameters (REPs), moisture indices (MIs), and their combination. We report several key results. For ground data, the model that combined all parameters (OA: 80.17%, Kappa: 0.73) performed better than VIs (OA: 75.21%, Kappa: 0.66), REPs (OA: 79.34%, Kappa: 0.67), and MIs (OA: 74.38%, Kappa: 0.65) in predicting the PWD stage of individual pine tree infection. REPs had the highest accuracy (OA: 80.33%, Kappa: 0.58) in distinguishing trees at the early stage of PWD from healthy trees. UAV-based HI data yielded similar results: the model combined VIs, REPs and MIs (OA: 74.38%, Kappa: 0.66) exhibited the highest accuracy in estimating the PWD stage of sampled trees, and REPs performed best in distinguishing healthy trees from trees at early stage of PWD (OA: 71.67%, Kappa: 0.40). Overall, our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage, although its accuracy must be improved before widespread use is practical. We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data. We believe that these results can be used to improve preventative measures in the control of PWD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fancy发布了新的文献求助10
2秒前
可爱的函函应助和abc采纳,获得10
2秒前
2秒前
2秒前
3秒前
研友_VZG7GZ应助归一然采纳,获得10
4秒前
今天还要努力呀完成签到,获得积分10
5秒前
独特的秋发布了新的文献求助10
7秒前
7秒前
乔凌云发布了新的文献求助10
11秒前
hyy完成签到,获得积分10
12秒前
樱桃完成签到 ,获得积分10
13秒前
16秒前
yolo完成签到,获得积分10
18秒前
Hello应助务实保温杯采纳,获得10
19秒前
NexusExplorer应助乔凌云采纳,获得10
19秒前
20秒前
20秒前
义气翩跹发布了新的文献求助10
20秒前
hai发布了新的文献求助10
20秒前
54Darren发布了新的文献求助50
25秒前
Morii完成签到,获得积分10
26秒前
26秒前
123姚发布了新的文献求助50
27秒前
懵懂的枫叶完成签到 ,获得积分10
27秒前
zijia完成签到,获得积分20
27秒前
28秒前
28秒前
30秒前
32秒前
研友_VZG7GZ应助呼斯冷采纳,获得10
32秒前
GQC发布了新的文献求助10
32秒前
455发布了新的文献求助10
34秒前
34秒前
cyy发布了新的文献求助10
34秒前
34秒前
乔凌云发布了新的文献求助10
35秒前
35秒前
所所应助Morii采纳,获得10
35秒前
天宇南神完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938