Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery

高光谱成像 油松 环境科学 遥感 卡帕 随机森林 植被(病理学) 马尾松 阶段(地层学) 林业 计算机科学 数学 人工智能 地理 植物 生物 医学 古生物学 几何学 病理
作者
Runsheng Yu,Lili Ren,Youqing Luo
出处
期刊:Forest Ecosystems [Springer Nature]
卷期号:8: 44-44 被引量:59
标识
DOI:10.1186/s40663-021-00328-6
摘要

Pine wilt disease (PWD) is a major ecological concern in China that has caused severe damage to millions of Chinese pines (Pinus tabulaeformis). To control the spread of PWD, it is necessary to develop an effective approach to detect its presence in the early stage of infection. One potential solution is the use of Unmanned Airborne Vehicle (UAV) based hyperspectral images (HIs). UAV-based HIs have high spatial and spectral resolution and can gather data rapidly, potentially enabling the effective monitoring of large forests. Despite this, few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine. To fill this gap, we used a Random Forest (RF) algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data (data directly collected from trees in the field). We compared relative accuracy of each of these data collection methods. We built our RF model using vegetation indices (VIs), red edge parameters (REPs), moisture indices (MIs), and their combination. We report several key results. For ground data, the model that combined all parameters (OA: 80.17%, Kappa: 0.73) performed better than VIs (OA: 75.21%, Kappa: 0.66), REPs (OA: 79.34%, Kappa: 0.67), and MIs (OA: 74.38%, Kappa: 0.65) in predicting the PWD stage of individual pine tree infection. REPs had the highest accuracy (OA: 80.33%, Kappa: 0.58) in distinguishing trees at the early stage of PWD from healthy trees. UAV-based HI data yielded similar results: the model combined VIs, REPs and MIs (OA: 74.38%, Kappa: 0.66) exhibited the highest accuracy in estimating the PWD stage of sampled trees, and REPs performed best in distinguishing healthy trees from trees at early stage of PWD (OA: 71.67%, Kappa: 0.40). Overall, our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage, although its accuracy must be improved before widespread use is practical. We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data. We believe that these results can be used to improve preventative measures in the control of PWD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到,获得积分20
刚刚
mmol发布了新的文献求助10
刚刚
李杰发布了新的文献求助10
刚刚
没烦恼完成签到,获得积分10
刚刚
二小完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
阳光的衫完成签到,获得积分10
3秒前
3秒前
无花果应助kento采纳,获得30
3秒前
ajia发布了新的文献求助20
3秒前
4秒前
酷波er应助zz采纳,获得10
4秒前
Orange应助timeless采纳,获得10
4秒前
4秒前
李爱国应助copper采纳,获得10
4秒前
5秒前
znhy发布了新的文献求助10
5秒前
爆米花应助待破晓采纳,获得10
5秒前
半分甜完成签到,获得积分10
6秒前
view发布了新的文献求助10
6秒前
Orange应助nightmare采纳,获得10
6秒前
Lee发布了新的文献求助10
7秒前
单薄的高跟鞋完成签到,获得积分10
7秒前
7秒前
hi完成签到 ,获得积分20
7秒前
小魔头完成签到,获得积分10
7秒前
聪明摩托发布了新的文献求助10
8秒前
拾陆发布了新的文献求助10
8秒前
JamesPei应助白菜也挺贵采纳,获得10
8秒前
李杰完成签到,获得积分10
9秒前
研友_nqvkOZ应助rebeccahu采纳,获得10
9秒前
LvCR完成签到 ,获得积分10
9秒前
zh完成签到,获得积分10
9秒前
甜甜甜发布了新的文献求助20
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879