Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery

高光谱成像 油松 环境科学 遥感 卡帕 随机森林 植被(病理学) 马尾松 阶段(地层学) 林业 计算机科学 数学 人工智能 地理 植物 生物 医学 病理 几何学 古生物学
作者
Runsheng Yu,Lili Ren,Youqing Luo
出处
期刊:Forest Ecosystems [Springer Nature]
卷期号:8: 44-44 被引量:59
标识
DOI:10.1186/s40663-021-00328-6
摘要

Pine wilt disease (PWD) is a major ecological concern in China that has caused severe damage to millions of Chinese pines (Pinus tabulaeformis). To control the spread of PWD, it is necessary to develop an effective approach to detect its presence in the early stage of infection. One potential solution is the use of Unmanned Airborne Vehicle (UAV) based hyperspectral images (HIs). UAV-based HIs have high spatial and spectral resolution and can gather data rapidly, potentially enabling the effective monitoring of large forests. Despite this, few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine. To fill this gap, we used a Random Forest (RF) algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data (data directly collected from trees in the field). We compared relative accuracy of each of these data collection methods. We built our RF model using vegetation indices (VIs), red edge parameters (REPs), moisture indices (MIs), and their combination. We report several key results. For ground data, the model that combined all parameters (OA: 80.17%, Kappa: 0.73) performed better than VIs (OA: 75.21%, Kappa: 0.66), REPs (OA: 79.34%, Kappa: 0.67), and MIs (OA: 74.38%, Kappa: 0.65) in predicting the PWD stage of individual pine tree infection. REPs had the highest accuracy (OA: 80.33%, Kappa: 0.58) in distinguishing trees at the early stage of PWD from healthy trees. UAV-based HI data yielded similar results: the model combined VIs, REPs and MIs (OA: 74.38%, Kappa: 0.66) exhibited the highest accuracy in estimating the PWD stage of sampled trees, and REPs performed best in distinguishing healthy trees from trees at early stage of PWD (OA: 71.67%, Kappa: 0.40). Overall, our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage, although its accuracy must be improved before widespread use is practical. We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data. We believe that these results can be used to improve preventative measures in the control of PWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MING_Q发布了新的文献求助10
2秒前
爻解发布了新的文献求助10
2秒前
难过大神发布了新的文献求助10
3秒前
可爱的函函应助热情千亦采纳,获得10
3秒前
慕青应助夕荀采纳,获得10
3秒前
南山发布了新的文献求助10
4秒前
4秒前
叶叶叶完成签到,获得积分10
5秒前
5秒前
马文发布了新的文献求助10
5秒前
6秒前
Enia完成签到,获得积分10
7秒前
南山完成签到,获得积分10
10秒前
二十七发布了新的文献求助10
12秒前
情怀应助彭三忘采纳,获得10
13秒前
13秒前
热情千亦完成签到,获得积分20
14秒前
fshadow完成签到,获得积分10
15秒前
MING_Q完成签到,获得积分10
15秒前
ccboom完成签到,获得积分10
15秒前
17秒前
17秒前
可爱的函函应助爻解采纳,获得10
18秒前
19秒前
外向的书包完成签到,获得积分10
19秒前
Joy关闭了Joy文献求助
20秒前
酸色黑樱桃完成签到,获得积分10
20秒前
20秒前
www发布了新的文献求助10
21秒前
Orange应助gdh采纳,获得10
22秒前
YY完成签到 ,获得积分10
22秒前
提莫silence完成签到 ,获得积分10
24秒前
彭于晏应助自然秋采纳,获得10
25秒前
大力的飞莲完成签到,获得积分10
26秒前
27秒前
yh完成签到,获得积分10
27秒前
30秒前
31秒前
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242994
求助须知:如何正确求助?哪些是违规求助? 2887092
关于积分的说明 8246361
捐赠科研通 2555681
什么是DOI,文献DOI怎么找? 1383795
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631