Impact of Muscle Mass on Survival in Patients with Sepsis: A Systematic Review and Meta-Analysis

肌萎缩 医学 危险系数 败血症 荟萃分析 科克伦图书馆 置信区间 内科学 相对风险 子群分析 肌肉团 生存分析 比例危险模型
作者
Jiajie Zhang,Yicheng Huang,Yingsha Chen,Xiaomin Shen,Hongying Pan,Wei Yu
出处
期刊:Annals of Nutrition and Metabolism [S. Karger AG]
卷期号:77 (6): 330-336 被引量:18
标识
DOI:10.1159/000519642
摘要

<b><i>Introduction:</i></b> The aim of this study is to investigate the association between loss of muscle mass and prognosis of sepsis. <b><i>Methods:</i></b> Six databases, including PubMed, Embase, Cochrane Library, Web of Science, Scopus, and Ovid, were searched by the deadline of August 18, 2020. A meta-analysis was conducted on the collected data by means of a random-effects model. The quality of each included article was assessed according to the Newcastle-Ottawa Scale. <b><i>Results:</i></b> Out of 1,819 references, 6 articles and 1 conference abstract were included. Sepsis patients with a loss of muscle mass or sarcopenia had higher mortality (risk ratio [RR]: 1.94, 95% confidence intervals [CI]: 1.59–2.37; I-squared = 18.7%, <i>p</i> &#x3c; 0.001). The RR of mortality within 30 days (RR: 2.31, 95% CI: 1.78–2.99, <i>p</i> &#x3c; 0.001) was higher than that of mortality over 30 days. Loss of psoas muscle mass, as evaluated by CT, showed the highest RR of sepsis mortality. In addition, based on data on overall survival retrieved from 4 trials, the pooled hazard ratio (HR) for patients with a loss of muscle mass or sarcopenia was 3.04. Subgroup analysis showed that survival time was the main source of heterogeneity for the overall HR. Furthermore, the scanning areas of muscle mass in survival patients were 0.33 cm<sup>2</sup>/m<sup>2</sup> higher than those measured in deceased patients. <b><i>Conclusion:</i></b> A loss of muscle mass, as evaluated by CT scan, was associated with a poor outcome in sepsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼王木木完成签到,获得积分10
刚刚
刚刚
刚刚
1mo完成签到,获得积分10
1秒前
liushiyi完成签到,获得积分10
1秒前
Mininine完成签到,获得积分10
1秒前
1秒前
魁梧的豆完成签到,获得积分10
1秒前
CoverSx完成签到,获得积分10
2秒前
心灵美映之完成签到 ,获得积分10
2秒前
在雨里思考完成签到,获得积分10
2秒前
Georges-09完成签到,获得积分10
2秒前
mumu发布了新的文献求助10
2秒前
3秒前
无花果应助乐观的书竹采纳,获得10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
rrjl完成签到,获得积分10
4秒前
勤劳元瑶完成签到,获得积分10
4秒前
1mo发布了新的文献求助10
4秒前
Lexi发布了新的文献求助30
4秒前
勤奋笑天发布了新的文献求助10
5秒前
5秒前
在水一方应助寰2023采纳,获得10
5秒前
爱撒娇的鹭洋完成签到,获得积分10
5秒前
落雪慕卿颜完成签到,获得积分10
5秒前
Dore发布了新的文献求助30
5秒前
王春梅完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
小嘀嗒完成签到,获得积分10
7秒前
雅雅完成签到 ,获得积分10
7秒前
要努力鸭发布了新的文献求助10
7秒前
xingyuwuhen007完成签到,获得积分10
7秒前
7秒前
橙橙子发布了新的文献求助10
8秒前
小陈完成签到,获得积分10
8秒前
酷波er应助Wang采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707759
求助须知:如何正确求助?哪些是违规求助? 5185605
关于积分的说明 15251636
捐赠科研通 4860988
什么是DOI,文献DOI怎么找? 2609102
邀请新用户注册赠送积分活动 1559828
关于科研通互助平台的介绍 1517619