Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting

乳腺癌 磁共振成像 医学 癌症 医学物理学 核磁共振 内科学 放射科 物理
作者
Angela M. Jarrett,Anum S. Kazerouni,Chengyue Wu,John Virostko,Anna G. Sorace,Julie C. DiCarlo,David A. Hormuth,David A. Ekrut,Debra A. Patt,Boone Goodgame,Sarah Avery,Thomas E. Yankeelov
出处
期刊:Nature Protocols [Springer Nature]
卷期号:16 (11): 5309-5338 被引量:22
标识
DOI:10.1038/s41596-021-00617-y
摘要

This protocol describes a complete data acquisition, analysis and computational forecasting pipeline for employing quantitative MRI data to predict the response of locally advanced breast cancer to neoadjuvant therapy in a community-based care setting. The methodology has previously been successfully applied to a heterogeneous patient population. The protocol details how to acquire the necessary images followed by registration, segmentation, quantitative perfusion and diffusion analysis, model calibration, and prediction. The data collection portion of the protocol requires ~25 min of scanning, postprocessing requires 2–3 h, and the model calibration and prediction components require ~10 h per patient depending on tumor size. The response of individual breast cancer patients to neoadjuvant therapy is forecast by application of a biophysical, reaction–diffusion mathematical model to these data. Successful application of the protocol results in coregistered MRI data from at least two scan visits that quantifies an individual tumor's size, cellularity and vascular properties. This enables a spatially resolved prediction of how a particular patient's tumor will respond to therapy. Expertise in image acquisition and analysis, as well as the numerical solution of partial differential equations, is required to carry out this protocol. Quantitative MRI data acquired from patients with locally advanced breast cancer are used to calibrate a biophysical, reaction–diffusion mathematical model to predict response to neoadjuvant therapy on an individual patient basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新完成签到,获得积分10
刚刚
陶弈衡完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
愉快盼曼发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
nemo发布了新的文献求助10
6秒前
学术蝗虫完成签到,获得积分10
6秒前
justin完成签到,获得积分10
7秒前
西瓜啵啵完成签到,获得积分10
9秒前
小周完成签到,获得积分10
9秒前
Louki完成签到 ,获得积分10
9秒前
温暖的颜演完成签到 ,获得积分10
10秒前
yudandan@CJLU发布了新的文献求助10
11秒前
科研小民工应助_呱_采纳,获得50
11秒前
愉快盼曼完成签到,获得积分20
11秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
13679165979发布了新的文献求助10
13秒前
温暖的钻石完成签到,获得积分10
13秒前
科研通AI5应助赖道之采纳,获得10
13秒前
14秒前
苏卿应助Eric采纳,获得10
14秒前
思源应助hhzz采纳,获得10
15秒前
红红完成签到,获得积分10
18秒前
瑶一瑶发布了新的文献求助10
18秒前
NexusExplorer应助刘鹏宇采纳,获得10
18秒前
roselau完成签到,获得积分10
18秒前
yudandan@CJLU完成签到,获得积分10
19秒前
19秒前
半山完成签到,获得积分10
23秒前
吹泡泡的红豆完成签到 ,获得积分10
24秒前
研友_89eBO8完成签到 ,获得积分10
24秒前
隐形曼青应助ZeJ采纳,获得10
24秒前
24秒前
隐形曼青应助温暖的钻石采纳,获得10
25秒前
Khr1stINK发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808