亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Parkinson's Disease and Its Pathology via Simple Clinical Variables.

帕金森病 医学 疾病 内科学
作者
Ibrahim Karabayir,Liam Butler,Samuel M. Goldman,Rishikesan Kamaleswaran,Fatma Güntürkün,Robert Davis,G. Webster Ross,Helen Petrovitch,Kamal Masaki,Caroline M. Tanner,Georgios Tsivgoulis,Andrei V Alexandrov,Lokesh K. Chinthala,Oguz Akbilgic
出处
期刊:Journal of Parkinson's disease [IOS Press]
卷期号:: 1-11
标识
DOI:10.3233/jpd-212876
摘要

BACKGROUND Parkinson's disease (PD) is a chronic, disabling neurodegenerative disorder. OBJECTIVE To predict a future diagnosis of PD using questionnaires and simple non-invasive clinical tests. METHODS Participants in the prospective Kuakini Honolulu-Asia Aging Study (HAAS) were evaluated biannually between 1995-2017 by PD experts using standard diagnostic criteria. Autopsies were sought on all deaths. We input simple clinical and risk factor variables into an ensemble-tree based machine learning algorithm and derived models to predict the probability of developing PD. We also investigated relationships of predictive models and neuropathologic features such as nigral neuron density. RESULTS The study sample included 292 subjects, 25 of whom developed PD within 3 years and 41 by 5 years. 116 (46%) of 251 subjects not diagnosed with PD underwent autopsy. Light Gradient Boosting Machine modeling of 12 predictors correctly classified a high proportion of individuals who developed PD within 3 years (area under the curve (AUC) 0.82, 95%CI 0.76-0.89) or 5 years (AUC 0.77, 95%CI 0.71-0.84). A large proportion of controls who were misclassified as PD had Lewy pathology at autopsy, including 79%of those who died within 3 years. PD probability estimates correlated inversely with nigral neuron density and were strongest in autopsies conducted within 3 years of index date (r = -0.57, p <  0.01). CONCLUSION Machine learning can identify persons likely to develop PD during the prodromal period using questionnaires and simple non-invasive tests. Correlation with neuropathology suggests that true model accuracy may be considerably higher than estimates based solely on clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
35秒前
36秒前
诺hn完成签到 ,获得积分10
41秒前
田様应助LL采纳,获得10
56秒前
1分钟前
LL发布了新的文献求助10
1分钟前
1分钟前
么么么发布了新的文献求助10
1分钟前
1分钟前
么么么完成签到 ,获得积分10
1分钟前
1分钟前
李九妹完成签到 ,获得积分10
1分钟前
经冰夏完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大个应助含蓄戾采纳,获得10
1分钟前
轩仔发布了新的文献求助10
1分钟前
2分钟前
NCL完成签到,获得积分10
2分钟前
2分钟前
好巧完成签到,获得积分10
2分钟前
含蓄戾完成签到,获得积分10
2分钟前
2分钟前
含蓄戾发布了新的文献求助10
2分钟前
医者仁心完成签到,获得积分10
2分钟前
Julie发布了新的文献求助10
2分钟前
打打应助NCL采纳,获得10
2分钟前
搜集达人应助材料摆渡人采纳,获得10
2分钟前
2分钟前
choyng发布了新的文献求助10
2分钟前
科研通AI2S应助XIN采纳,获得10
2分钟前
热带蚂蚁完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
樱桃猴子应助Julie采纳,获得10
3分钟前
NCL发布了新的文献求助10
3分钟前
木木发布了新的文献求助10
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798015
关于积分的说明 7826470
捐赠科研通 2454516
什么是DOI,文献DOI怎么找? 1306328
科研通“疑难数据库(出版商)”最低求助积分说明 627704
版权声明 601522