Radiomics Marker Models for the Diagnosis of Rotator Cuff Tear and Prediction of Post-Operative Re-Tear

肩袖 医学 无线电技术 放射科 眼泪 外科
作者
Weiliang Shen,Fei Yang,Yidong Wan,Lei Xu,Zizhan Huang,Qin Lu,Canlong Wang,Peiwen He,Xiaozhong Zhou,Boon Chin Heng,Tianye Niu,Yan Wu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3893503
摘要

Background: Experienced surgeons most commonly utilize Magnetic Resonance Imaging (MRI) to diagnose rotator cuff tear (RCT) and predict the possibility of post-operative re-tear. Radiomics adjuvant therapy is widely used to improve the response prediction of clinical tasks. We validated a classifier to distinguish the status of rotator cuff tear and predict post-operative re-tear by utilizing MRI markers.Methods: We selected 101 patients with no abnormality in rotator cuff and 101 patients undergoing arthroscopic rotator cuff repair diagnosed as RCT by MRI. Radiomics features of RCT were identified from the pre-operative shoulder MRI. A radiomics model for diagnosis of RCT was constructed, based on the 3D volume of interest (VOI) of supraspinatus from 202 patients. Additionally, a model for prediction prognosis was made, based on VOI of humerus, supraspinatus, infraspinatus and other clinical parameters.Findings: The model for diagnosing the status of RCT produced an AUC of 0.989 (95%CI: 0.954-0.999) in the training cohort and 0.979 (95% CI: 0.906-0.999) for the validation cohort. Four highest mRMR-ranked features were selected to construct the RCT model. The MRI signature markers, based on features extracted from the humerus, supraspinatus, and infraspinatus yielded average AUC of 0.662±0.054,0.673±0.089,0.879±0.041 for training sets and 0.600±0.064, 0.673±0.089, 0.739±0.069 for validation sets. The model based on multiple regions of interests produced an AUC of 0.923±0.017 for the training dataset and 0.790±0.082 for the validation dataset. The nomogram combining integrated features and clinical factors yielded an AUC of 0.961±0.020 for the training dataset and 0.808±0.081 for the validation dataset, which displayed the best performance among all models.Interpretation: Our study validated two models for the diagnosis of rotator cuff tear and prediction of post-operative re-tear respectively. The RCT model had a favorable performance in diagnosis, while the combined nomogram based on radiomics score and clinical factors yielded a decent prediction accuracy of re-tear. Both models are anticipated to provide valuable information for clinical decision-making in the future.Funding Statement: This work was supported by the National Natural Science Foundation (81874019).Declaration of Interests: All authors declare that they have no conflicts of interest.Ethics Approval Statement: This retrospective study was approved by the Institutional Review Board of the Second Affiliated Hospital, Zhejiang University School of Medicine (Zhejiang, China). The signed informed consent forms were waived. This study was conducted according to the Declaration of Helsinki.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty心明亮完成签到 ,获得积分10
1秒前
幽默亦旋完成签到 ,获得积分10
2秒前
ccx完成签到,获得积分10
3秒前
Akim应助蚂蚁的奋斗采纳,获得10
3秒前
芋泥泥泥完成签到 ,获得积分10
3秒前
sunny完成签到,获得积分10
4秒前
充电宝应助又一岁荣枯采纳,获得10
4秒前
yin123完成签到,获得积分10
5秒前
啦啦啦完成签到,获得积分10
5秒前
kaikai完成签到,获得积分20
6秒前
6秒前
李爱国应助melenda采纳,获得10
7秒前
PPL发布了新的文献求助30
7秒前
汉堡包应助sysxxx采纳,获得10
7秒前
7秒前
寒冷哈密瓜完成签到 ,获得积分10
8秒前
科研通AI2S应助hbrl采纳,获得10
10秒前
12秒前
xzh完成签到,获得积分10
13秒前
13秒前
mmr发布了新的文献求助10
14秒前
14秒前
英俊的铭应助夏青荷采纳,获得10
15秒前
和谐乐儿完成签到 ,获得积分10
15秒前
早睡早起完成签到 ,获得积分10
15秒前
16秒前
tzj完成签到,获得积分10
16秒前
古少完成签到,获得积分10
18秒前
18秒前
温柔的曲奇完成签到 ,获得积分10
19秒前
melenda发布了新的文献求助10
19秒前
20秒前
20秒前
mm完成签到 ,获得积分10
21秒前
Bizibili完成签到,获得积分10
21秒前
FBI911应助昏睡的熊猫采纳,获得10
22秒前
22秒前
23秒前
24秒前
丰富的水卉完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737046
求助须知:如何正确求助?哪些是违规求助? 3280882
关于积分的说明 10021848
捐赠科研通 2997592
什么是DOI,文献DOI怎么找? 1644666
邀请新用户注册赠送积分活动 782100
科研通“疑难数据库(出版商)”最低求助积分说明 749707