RNANetMotif: identifying sequence-structure RNA network motifs in RNA-protein binding sites

核糖核酸 RNA结合蛋白 计算生物学 结合位点 RNA剪接 核酸结构 序列(生物学) 蛋白质二级结构 生物 对接(动物) 核酸二级结构 化学 遗传学 生物化学 基因
作者
Hongli Ma,Han Wen,Zhiyuan Xue,Guojun Li,Zhaolei Zhang
标识
DOI:10.1101/2021.09.15.460452
摘要

Abstract RNA molecules can adopt stable secondary and tertiary structures, which is essential in mediating physical interactions with other partners such as RNA binding proteins (RBPs) and in carrying out their cellular functions. In vivo and in vitro experiments such as RNAcompete and eCLIP have revealed in vitro binding preferences of RBPs to RNA oligomers and in vivo binding sites in cells. Analysis of these binding data showed that the structure properties of the RNAs in these binding sites are important determinants of the binding events; however, it has been a challenge to incorporate the structure information into an interpretable model. Here we describe a new approach, RNANetMotif, which takes predicted secondary structure of thousands of RNA sequences bound by an RBP as input and uses a graph theory approach to recognize enriched subgraphs. These enriched subgraphs are in essence shared sequence-structure elements that are important in RBP-RNA binding. To validate our approach, we performed RNA structure modeling via discrete molecular dynamics folding simulations for selected 4 RBPs, and RNA-protein docking for LIN28. The simulation results, e.g., solvent accessibility and energetics, further support the biological relevance of the discovered network subgraphs. Author Summary RNA binding proteins (RBPs) regulate every aspect of RNA biology, including splicing, translation, transportation, and degradation. High-throughput technologies such as eCLIP have identified thousands of binding sites for a given RBP throughout the genome. It has been shown by earlier studies that, in addition to nucleotide sequences, the structure and conformation of RNAs also play important role in RBP-RNA interactions. Analogous to protein-protein interactions or protein-DNA interactions, it is likely that there exist intrinsic sequence-structure motifs common to these RNAs that underlie their binding specificity to specific RBPs. It is known that RNAs form energetically favorable secondary structures, which can be represented as a graph, with nucleotides being nodes and backbone covalent bonds and base-pairing hydrogen bonds representing edges. We hypothesize that these graphs can be mined by graph theory approaches to identify sequence-structure motifs as enriched sub-graphs. In this article, we described the details of this approach, termed RNANetMotif and associated new concepts, namely EKS (Extended K-mer Subgraphs) and GraphK graph search algorithm. To test the utility of our approach, we conducted 3D structure modeling of selected RNA sequences through molecular dynamics (MD) folding simulation and evaluated the significance of the discovered RNA motifs by comparing their spatial exposure with other regions on the RNA. We believe that this approach has the novelty of treating the RNA sequence as a graph and RBP binding sites as enriched subgraph, which has broader applications beyond RBP-RNA interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助hulahula采纳,获得10
2秒前
zhaoyanan发布了新的文献求助10
2秒前
冰墩墩发布了新的文献求助30
2秒前
2秒前
2秒前
氟锑酸发布了新的文献求助10
3秒前
调皮煎蛋完成签到,获得积分10
4秒前
4秒前
陈HIAHIA完成签到,获得积分10
4秒前
XXF完成签到,获得积分10
4秒前
5秒前
清梦完成签到,获得积分10
7秒前
7秒前
8秒前
科yan完成签到,获得积分10
8秒前
8秒前
Ava应助画风湖湘卷采纳,获得10
9秒前
9秒前
9秒前
10秒前
YYH发布了新的文献求助10
11秒前
阿昊完成签到,获得积分10
11秒前
传奇3应助guojingjing采纳,获得10
11秒前
ccm发布了新的文献求助10
12秒前
SONG发布了新的文献求助10
12秒前
12秒前
yinch发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
画风湖湘卷完成签到,获得积分10
15秒前
15秒前
李玲玲发布了新的文献求助10
15秒前
16秒前
调皮煎蛋发布了新的文献求助10
16秒前
刘小小星完成签到 ,获得积分10
16秒前
17秒前
17秒前
19秒前
SONG完成签到,获得积分10
19秒前
19秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114