亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Blockchain-Enabled Asynchronous Federated Learning in Edge Computing

计算机科学 MNIST数据库 异步通信 服务器 效率低下 单点故障 边缘计算 GSM演进的增强数据速率 骨料(复合) 分布式计算 边缘设备 点(几何) 趋同(经济学) 人工智能 深度学习 计算机网络 操作系统 云计算 材料科学 经济 复合材料 微观经济学 几何学 数学 经济增长
作者
Yinghui Liu,Youyang Qu,Chenhao Xu,Zhicheng Hao,Bruce Gu
出处
期刊:Sensors [MDPI AG]
卷期号:21 (10): 3335-3335 被引量:49
标识
DOI:10.3390/s21103335
摘要

The fast proliferation of edge computing devices brings an increasing growth of data, which directly promotes machine learning (ML) technology development. However, privacy issues during data collection for ML tasks raise extensive concerns. To solve this issue, synchronous federated learning (FL) is proposed, which enables the central servers and end devices to maintain the same ML models by only exchanging model parameters. However, the diversity of computing power and data sizes leads to a significant difference in local training data consumption, and thereby causes the inefficiency of FL. Besides, the centralized processing of FL is vulnerable to single-point failure and poisoning attacks. Motivated by this, we propose an innovative method, federated learning with asynchronous convergence (FedAC) considering a staleness coefficient, while using a blockchain network instead of the classic central server to aggregate the global model. It avoids real-world issues such as interruption by abnormal local device training failure, dedicated attacks, etc. By comparing with the baseline models, we implement the proposed method on a real-world dataset, MNIST, and achieve accuracy rates of 98.96% and 95.84% in both horizontal and vertical FL modes, respectively. Extensive evaluation results show that FedAC outperforms most existing models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjfc发布了新的文献求助10
3秒前
NexusExplorer应助mm采纳,获得10
5秒前
lijiawei完成签到,获得积分10
7秒前
9秒前
Ava应助cjfc采纳,获得10
14秒前
Mr完成签到 ,获得积分10
18秒前
HaonanZhang发布了新的文献求助10
18秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
嘿嘿应助科研通管家采纳,获得10
19秒前
JoeyJin完成签到,获得积分10
24秒前
ceeray23发布了新的文献求助20
24秒前
科研通AI2S应助中野霊乃采纳,获得10
27秒前
35秒前
养乐多敬你完成签到 ,获得积分10
36秒前
44秒前
无情的问枫完成签到 ,获得积分10
48秒前
万能图书馆应助研猫采纳,获得10
48秒前
50秒前
1分钟前
haiboe完成签到,获得积分10
1分钟前
清爽冬莲完成签到 ,获得积分0
1分钟前
crabcrab29完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助中野霊乃采纳,获得10
1分钟前
暴走小面包完成签到 ,获得积分10
1分钟前
1分钟前
阿宇发布了新的文献求助10
1分钟前
1分钟前
crabcrab29发布了新的文献求助10
1分钟前
mm发布了新的文献求助10
1分钟前
一日落叶发布了新的文献求助10
1分钟前
张KT发布了新的文献求助10
1分钟前
认真的幻姬完成签到,获得积分10
1分钟前
1分钟前
酷炫的爆米花完成签到,获得积分10
1分钟前
香菜芋头发布了新的文献求助30
1分钟前
哈哈666完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688306
关于积分的说明 14853219
捐赠科研通 4687948
什么是DOI,文献DOI怎么找? 2540480
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508