Metal-modified PtTe2 nanorods: Surface reconstruction for efficient methanol oxidation electrocatalysis

纳米棒 电催化剂 纳米材料 材料科学 催化作用 电化学 蚀刻(微加工) 化学工程 甲醇 碱金属 纳米技术 金属 无机化学 化学 物理化学 电极 冶金 有机化学 工程类 图层(电子)
作者
Jie Li,Cheng Wang,Hongyuan Shang,Yuan Wang,Huaming You,Hui Xu,Yukou Du
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:424: 130319-130319 被引量:87
标识
DOI:10.1016/j.cej.2021.130319
摘要

Co-modified PtTe 2 nanorods with abundant surface defects are prepared as efficient electrocatalysts for MOR. • A facile alkali-etching strategy is proposed for preparing defect-enriched PtTeM nanorods. • The PtTeCo nanorods after surface reconstruction are endowed with rich surface defects. • The modification of Co and surface reconstruction modulate the electronic structure of catalyst. • The ae-PtTeCo nanorods could deliver excellent electrocatalytic MOR performance. Nanomaterials with both one-dimensional structure and surface defect are attractive for electrocatalysis owing to the increased atomic utilization and exposed high-energetic sites. Herein, utilizing the alkali etching to drive structure reconstruction, a class of Co-modified PtTe 2 nanorods (ae-PtTeCo NRs) with surface defects are designed for efficient methanol oxidation reaction (MOR). The optimized ae-Pt 2 Te 6 Co 3 NRs show remarkable mass activity of 1.47 A mg −1 Pt and specific activity of 8.3 mA cm −2 , which are 3.4-fold and 8.1-fold higher than those of commercial Pt/C, respectively. Electrochemical measurements and physical characterizations reveal that the enhanced MOR performance of ae-Pt 3 Te 6 Co 2 NRs is attributed to the abundant surface defects and optimized electronic structure, which effectively promote the oxidation of CO-like intermediates. Meanwhile, such an alkali etching strategy is universal to fabricate other metal-modified PtTe 2 NRs with surface defects, achieving a class of ae-PtTeM NRs (M = Ag, Sn, Cu, Pd, Pb, Ir, In, Cd, Bi, Ni, Ru, Ga).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助柠檬采纳,获得10
1秒前
库里晚安完成签到,获得积分10
1秒前
A1len完成签到 ,获得积分10
2秒前
星辰大海应助sokach采纳,获得10
3秒前
新一发布了新的文献求助30
3秒前
守夜人完成签到,获得积分10
3秒前
习习应助孔雀翎采纳,获得10
4秒前
liu完成签到,获得积分10
4秒前
田様应助玉衡璇玑采纳,获得10
5秒前
成就梦松发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
Orange应助123采纳,获得10
7秒前
9秒前
仄言完成签到,获得积分10
9秒前
10秒前
儒雅的斑马完成签到,获得积分10
10秒前
汉堡包应助咕噜仔采纳,获得10
10秒前
FashionBoy应助momo采纳,获得10
10秒前
11秒前
11秒前
12秒前
第七兵团司令完成签到,获得积分10
13秒前
13秒前
qwq应助追梦采纳,获得10
13秒前
13秒前
14秒前
我爱Chem完成签到 ,获得积分10
14秒前
半生发布了新的文献求助30
15秒前
15秒前
成就梦松完成签到,获得积分10
15秒前
byyyy完成签到,获得积分10
15秒前
温暖的俊驰完成签到,获得积分10
16秒前
Isabel完成签到,获得积分10
16秒前
yx应助陈强采纳,获得30
17秒前
sokach发布了新的文献求助10
19秒前
缓慢荔枝发布了新的文献求助10
19秒前
123发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672