Use of a Design of Experiments (DoE) Approach to Optimize Large-Scale Freeze-Thaw Process of Biologics

实验设计 化学 响应面法 体积热力学 乳酸脱氢酶 热力学 色谱法 生物化学 数学 统计 物理
作者
Bruna Minatovicz,Robin H. Bogner,Bodhisattwa Chaudhuri
出处
期刊:Aaps Pharmscitech [Springer Nature]
卷期号:22 (4) 被引量:9
标识
DOI:10.1208/s12249-021-02034-6
摘要

Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from −20 to −80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of −80°C (2.2% higher tetramer retention compared to −20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆滑的铁勺完成签到,获得积分10
刚刚
刚刚
刚刚
zhangting完成签到,获得积分10
1秒前
AAAAAAAAAAA完成签到,获得积分10
1秒前
vvvvvvv完成签到,获得积分10
1秒前
1秒前
wanyanjin应助1111采纳,获得10
1秒前
gaos发布了新的文献求助10
2秒前
小吴完成签到,获得积分10
3秒前
迟大猫应助Star1983采纳,获得10
3秒前
chinning完成签到,获得积分10
4秒前
Mon_zh发布了新的文献求助20
4秒前
4秒前
漂亮送终完成签到,获得积分10
4秒前
朴素篮球发布了新的文献求助10
5秒前
天才完成签到 ,获得积分10
5秒前
不喝可乐发布了新的文献求助10
5秒前
6秒前
皮尤尤发布了新的文献求助10
6秒前
7秒前
道中道完成签到,获得积分10
8秒前
8秒前
知之然完成签到,获得积分10
8秒前
研友_n2QP2L完成签到,获得积分10
8秒前
Lucas应助安静听白采纳,获得10
8秒前
CC发布了新的文献求助10
8秒前
星辰大海应助系统提示采纳,获得10
9秒前
9秒前
sss完成签到,获得积分10
9秒前
9秒前
板凳完成签到,获得积分10
10秒前
单纯访枫发布了新的文献求助30
10秒前
bin0920发布了新的文献求助10
10秒前
aaaaaa完成签到,获得积分10
11秒前
tangsuyun完成签到,获得积分20
11秒前
MADKAI发布了新的文献求助50
11秒前
大方小白完成签到,获得积分10
11秒前
xiaokezhang发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678