Deep neural network-based approach to improving radiomics analysis reproducibility in liver cancer: effect on image resampling

再现性 插值(计算机图形学) 人工智能 重采样 模式识别(心理学) 人工神经网络 一致性 计算机科学 数学 卡帕 相似性(几何) 接收机工作特性 核医学 医学 图像(数学) 统计 内科学 几何学
作者
Pengfei Yang,Lei Xu,Yidong Wan,Jing Yang,Yi Xue,Yangkang Jiang,Chen Luo,Jing Wang,Tianye Niu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (16): 165009-165009 被引量:5
标识
DOI:10.1088/1361-6560/ac16e8
摘要

Objectives.To test the effect of traditional up-sampling slice thickness (ST) methods on the reproducibility of CT radiomics features of liver tumors and investigate the improvement using a deep neural network (DNN) scheme.Methods.CT images with ≤ 1 mm ST in the public dataset were converted to low-resolution (3 mm, 5 mm) CT images. A DNN model was trained for the conversion from 3 mm ST and 5 mm ST to 1 mm ST and compared with conventional interpolation-based methods (cubic, linear, nearest) using structural similarity (SSIM) and peak-signal-to-noise-ratio (PSNR). Radiomics features were extracted from the tumor and tumor ring regions. The reproducibility of features from images converted using DNN and interpolation schemes were assessed using the concordance correlation coefficients (CCC) with the cutoff of 0.85. The paired t-test and Mann-Whitney U test were used to compare the evaluation metrics, where appropriate.Results.CT images of 108 patients were used for training (n = 63), validation (n = 11) and testing (n = 34). The DNN method showed significantly higher PSNR and SSIM values (p < 0.05) than interpolation-based methods. The DNN method also showed a significantly higher CCC value than interpolation-based methods. For features in the tumor region, compared with the cubic interpolation approach, the reproducible features increased from 393 (82%) to 422(88%) for the conversion of 3-1 mm, and from 305(64%) to 353(74%) for the conversion of 5-1 mm. For features in the tumor ring region, the improvement was from 395 (82%) to 431 (90%) and from 290 (60%) to 335 (70%), respectively.Conclusions.The DNN based ST up-sampling approach can improve the reproducibility of CT radiomics features in liver tumors, promoting the standardization of CT radiomics studies in liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研科完成签到,获得积分10
刚刚
1秒前
酷炫翠桃应助王不王采纳,获得10
1秒前
1秒前
苹果发布了新的文献求助10
1秒前
追寻的秋玲完成签到,获得积分10
2秒前
易槐完成签到,获得积分10
2秒前
曦曦发布了新的文献求助10
2秒前
无语的从云完成签到,获得积分10
3秒前
开心如冬完成签到,获得积分10
4秒前
桑葚完成签到,获得积分10
4秒前
ZYC007完成签到,获得积分10
4秒前
4秒前
Emily完成签到,获得积分10
5秒前
慕青应助xy采纳,获得10
5秒前
英俊的铭应助dahuihui采纳,获得10
5秒前
顺心紫南完成签到,获得积分10
5秒前
menghongmei发布了新的文献求助10
6秒前
偷乐发布了新的文献求助10
6秒前
李健应助无语的笑珊采纳,获得10
6秒前
6秒前
有机分子笼完成签到,获得积分10
7秒前
77777发布了新的文献求助10
7秒前
yjzzz完成签到,获得积分10
7秒前
fly完成签到,获得积分10
7秒前
大模型应助Dearjw1655采纳,获得10
8秒前
8秒前
8秒前
yueyue完成签到,获得积分10
8秒前
莫西莫西发布了新的文献求助10
8秒前
9秒前
ColinWine完成签到,获得积分10
9秒前
10秒前
10秒前
Rony发布了新的文献求助10
11秒前
无花果应助eves采纳,获得10
11秒前
正反馈发布了新的文献求助10
11秒前
zjiang完成签到 ,获得积分10
11秒前
regina完成签到,获得积分10
12秒前
科研通AI2S应助数学情缘采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582