Deep neural network-based approach to improving radiomics analysis reproducibility in liver cancer: effect on image resampling

再现性 插值(计算机图形学) 人工智能 重采样 模式识别(心理学) 人工神经网络 一致性 计算机科学 数学 卡帕 相似性(几何) 接收机工作特性 核医学 医学 图像(数学) 统计 内科学 几何学
作者
Pengfei Yang,Lei Xu,Yidong Wan,Jing Yang,Yi Xue,Yangkang Jiang,Chen Luo,Jing Wang,Tianye Niu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (16): 165009-165009 被引量:5
标识
DOI:10.1088/1361-6560/ac16e8
摘要

Objectives.To test the effect of traditional up-sampling slice thickness (ST) methods on the reproducibility of CT radiomics features of liver tumors and investigate the improvement using a deep neural network (DNN) scheme.Methods.CT images with ≤ 1 mm ST in the public dataset were converted to low-resolution (3 mm, 5 mm) CT images. A DNN model was trained for the conversion from 3 mm ST and 5 mm ST to 1 mm ST and compared with conventional interpolation-based methods (cubic, linear, nearest) using structural similarity (SSIM) and peak-signal-to-noise-ratio (PSNR). Radiomics features were extracted from the tumor and tumor ring regions. The reproducibility of features from images converted using DNN and interpolation schemes were assessed using the concordance correlation coefficients (CCC) with the cutoff of 0.85. The paired t-test and Mann-Whitney U test were used to compare the evaluation metrics, where appropriate.Results.CT images of 108 patients were used for training (n = 63), validation (n = 11) and testing (n = 34). The DNN method showed significantly higher PSNR and SSIM values (p < 0.05) than interpolation-based methods. The DNN method also showed a significantly higher CCC value than interpolation-based methods. For features in the tumor region, compared with the cubic interpolation approach, the reproducible features increased from 393 (82%) to 422(88%) for the conversion of 3-1 mm, and from 305(64%) to 353(74%) for the conversion of 5-1 mm. For features in the tumor ring region, the improvement was from 395 (82%) to 431 (90%) and from 290 (60%) to 335 (70%), respectively.Conclusions.The DNN based ST up-sampling approach can improve the reproducibility of CT radiomics features in liver tumors, promoting the standardization of CT radiomics studies in liver cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小蘑菇应助小星采纳,获得10
刚刚
刚刚
肥肥完成签到,获得积分10
刚刚
无限亦寒完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
不倦应助haoyooo采纳,获得10
2秒前
2秒前
思源应助tutu采纳,获得10
3秒前
苗条怀亦发布了新的文献求助10
3秒前
dew应助baomingqiu采纳,获得10
3秒前
南北3199完成签到,获得积分10
3秒前
Min发布了新的文献求助10
4秒前
润xue完成签到,获得积分10
4秒前
龙大王完成签到 ,获得积分10
4秒前
辛勤月饼发布了新的文献求助20
5秒前
5秒前
5秒前
6秒前
打工人发布了新的文献求助10
6秒前
小王完成签到,获得积分10
6秒前
天一发布了新的文献求助10
6秒前
刘钊扬完成签到,获得积分10
6秒前
6秒前
6秒前
JamesPei应助独特的翠芙采纳,获得10
6秒前
6秒前
acorn发布了新的文献求助10
7秒前
wythu16完成签到,获得积分10
7秒前
7秒前
7秒前
周_发布了新的文献求助10
7秒前
derozan完成签到,获得积分10
7秒前
山菡发布了新的文献求助30
8秒前
非泥完成签到,获得积分10
8秒前
文乾乾发布了新的文献求助10
8秒前
在水一方应助任性绮晴采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665433
求助须知:如何正确求助?哪些是违规求助? 4876596
关于积分的说明 15113729
捐赠科研通 4824584
什么是DOI,文献DOI怎么找? 2582801
邀请新用户注册赠送积分活动 1536780
关于科研通互助平台的介绍 1495335