亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend Prediction

超图 成对比较 库存(枪支) 计算机科学 关系数据库 数据挖掘 人工智能 计量经济学 经济 数学 地理 考古 离散数学
作者
Chaoran Cui,Xiaojie Li,Juan Du,Chunyun Zhang,Xiushan Nie,Meng Wang,Yilong Yin
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2107.14033
摘要

Predicting the future price trends of stocks is a challenging yet intriguing problem given its critical role to help investors make profitable decisions. In this paper, we present a collaborative temporal-relational modeling framework for end-to-end stock trend prediction. The temporal dynamics of stocks is firstly captured with an attention-based recurrent neural network. Then, different from existing studies relying on the pairwise correlations between stocks, we argue that stocks are naturally connected as a collective group, and introduce the hypergraph structures to jointly characterize the stock group-wise relationships of industry-belonging and fund-holding. A novel hypergraph tri-attention network (HGTAN) is proposed to augment the hypergraph convolutional networks with a hierarchical organization of intra-hyperedge, inter-hyperedge, and inter-hypergraph attention modules. In this manner, HGTAN adaptively determines the importance of nodes, hyperedges, and hypergraphs during the information propagation among stocks, so that the potential synergies between stock movements can be fully exploited. Extensive experiments on real-world data demonstrate the effectiveness of our approach. Also, the results of investment simulation show that our approach can achieve a more desirable risk-adjusted return. The data and codes of our work have been released at https://github.com/lixiaojieff/HGTAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
19秒前
棠梨子完成签到 ,获得积分10
35秒前
38秒前
38秒前
39秒前
39秒前
39秒前
39秒前
39秒前
39秒前
39秒前
39秒前
爱静静应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
39秒前
爱静静应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
39秒前
爱静静应助科研通管家采纳,获得10
39秒前
爱静静应助科研通管家采纳,获得10
40秒前
爱静静应助科研通管家采纳,获得10
40秒前
yangjoy完成签到 ,获得积分10
44秒前
51秒前
1分钟前
1分钟前
bkagyin应助puzhongjiMiQ采纳,获得10
1分钟前
Orange应助puzhongjiMiQ采纳,获得30
1分钟前
烟花应助puzhongjiMiQ采纳,获得10
1分钟前
英姑应助puzhongjiMiQ采纳,获得30
1分钟前
研友_VZG7GZ应助puzhongjiMiQ采纳,获得30
1分钟前
Orange应助puzhongjiMiQ采纳,获得10
1分钟前
FashionBoy应助puzhongjiMiQ采纳,获得10
1分钟前
maodeshu应助puzhongjiMiQ采纳,获得10
1分钟前
maodeshu应助puzhongjiMiQ采纳,获得10
1分钟前
maodeshu应助puzhongjiMiQ采纳,获得10
1分钟前
酷酷的乌冬面完成签到,获得积分10
1分钟前
2分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330375
求助须知:如何正确求助?哪些是违规求助? 2960038
关于积分的说明 8598044
捐赠科研通 2638594
什么是DOI,文献DOI怎么找? 1444478
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727