超图
成对比较
库存(枪支)
计算机科学
关系数据库
数据挖掘
人工智能
计量经济学
经济
数学
地理
考古
离散数学
作者
Chaoran Cui,Xiaojie Li,Juan Du,Chunyun Zhang,Xiushan Nie,Meng Wang,Yilong Yin
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:4
标识
DOI:10.48550/arxiv.2107.14033
摘要
Predicting the future price trends of stocks is a challenging yet intriguing problem given its critical role to help investors make profitable decisions. In this paper, we present a collaborative temporal-relational modeling framework for end-to-end stock trend prediction. The temporal dynamics of stocks is firstly captured with an attention-based recurrent neural network. Then, different from existing studies relying on the pairwise correlations between stocks, we argue that stocks are naturally connected as a collective group, and introduce the hypergraph structures to jointly characterize the stock group-wise relationships of industry-belonging and fund-holding. A novel hypergraph tri-attention network (HGTAN) is proposed to augment the hypergraph convolutional networks with a hierarchical organization of intra-hyperedge, inter-hyperedge, and inter-hypergraph attention modules. In this manner, HGTAN adaptively determines the importance of nodes, hyperedges, and hypergraphs during the information propagation among stocks, so that the potential synergies between stock movements can be fully exploited. Extensive experiments on real-world data demonstrate the effectiveness of our approach. Also, the results of investment simulation show that our approach can achieve a more desirable risk-adjusted return. The data and codes of our work have been released at https://github.com/lixiaojieff/HGTAN.
科研通智能强力驱动
Strongly Powered by AbleSci AI