化学
去氢骆驼蓬碱
立体化学
酰胺
肉桂酸
伯氏疟原虫
可药性
结构-活动关系
细胞毒性
罗丹宁
体外
生物化学
药理学
疟疾
基因
免疫学
生物
医学
作者
Marina Marinović,Goran Poje,Ivana Perković,Diana Fontinha,Miguel Prudêncio,Jana Held,Laís Pessanha de Carvalho,Tana Tandarić,Robert Vianello,Zrinka Rajić
标识
DOI:10.1016/j.ejmech.2021.113687
摘要
The rise of the resistance of the malaria parasite to the currently approved therapy urges the discovery and development of new efficient agents. Previously we have demonstrated that harmicines, hybrid compounds composed from β-carboline alkaloid harmine and cinnamic acid derivatives, linked via either triazole or amide bond, exert significant antiplasmodial activity. In this paper, we report synthesis, antiplasmodial activity and cytotoxicity of expanded series of novel triazole- and amide-type harmicines. Structure-activity relationship analysis revealed that amide-type harmicines 27, prepared at N-9 of the β-carboline core, exhibit superior potency against both erythrocytic stage of P. falciparum and hepatic stages of P. berghei. Notably, harmicine 27a, m-(trifluoromethyl)cinnamic acid derivative, exhibited the most favourable selectivity index (SI = 1105). Molecular dynamics simulations revealed the ATP binding site of P. falciparum heat shock protein 90 as a druggable binding location, confirmed the usefulness of the harmine's N-9 substitution and identified favourable N-H … π interactions involving Lys45 and the aromatic phenyl unit in the attached cinnamic acid fragment as crucial for the enhanced biological activity. Thus, those compounds were identified as promising and valuable leads for further derivatization in the search of novel, more efficient antiplasmodial agents.
科研通智能强力驱动
Strongly Powered by AbleSci AI