Differential network analysis by simultaneously considering changes in gene interactions and gene expression

差速器(机械装置) 基因调控网络 基因 计算机科学 生物 网络分析 计算生物学 基因表达谱 表达式(计算机科学) 数据挖掘 基因表达调控
作者
Jia-Juan Tu,Le Ou-Yang,Yuan Zhu,Hong Yan,Hong Qin,Xiao-Fei Zhang
出处
期刊:Bioinformatics [Oxford University Press]
被引量:3
标识
DOI:10.1093/bioinformatics/btab502
摘要

Abstract Motivation Differential network analysis is an important tool to investigate the rewiring of gene interactions under different conditions. Several computational methods have been developed to estimate differential networks from gene expression data, but most of them do not consider that gene network rewiring may be driven by the differential expression of individual genes. New differential network analysis methods that simultaneously take account of the changes in gene interactions and changes in expression levels are needed. Results : In this article, we propose a differential network analysis method that considers the differential expression of individual genes when identifying differential edges. First, two hypothesis test statistics are used to quantify changes in partial correlations between gene pairs and changes in expression levels for individual genes. Then, an optimization framework is proposed to combine the two test statistics so that the resulting differential network has a hierarchical property, where a differential edge can be considered only if at least one of the two involved genes is differentially expressed. Simulation results indicate that our method outperforms current state-of-the-art methods. We apply our method to identify the differential networks between the luminal A and basal-like subtypes of breast cancer and those between acute myeloid leukemia and normal samples. Hub nodes in the differential networks estimated by our method, including both differentially and nondifferentially expressed genes, have important biological functions. Availability and implementation All the datasets underlying this article are publicly available. Processed data and source code can be accessed through the Github repository at https://github.com/Zhangxf-ccnu/chNet. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青黛完成签到 ,获得积分10
7秒前
伶俐的语雪完成签到,获得积分10
7秒前
郑洋完成签到 ,获得积分10
9秒前
roundtree完成签到 ,获得积分0
10秒前
cq_2完成签到,获得积分10
18秒前
张大星完成签到 ,获得积分10
22秒前
FUNG完成签到 ,获得积分10
24秒前
陈秋完成签到,获得积分10
31秒前
啦啦啦啦完成签到 ,获得积分10
34秒前
zodiac完成签到,获得积分10
38秒前
求助应助陈秋采纳,获得10
38秒前
清爽的火车完成签到 ,获得积分10
42秒前
酸辣完成签到 ,获得积分10
45秒前
娇娇大王完成签到,获得积分10
49秒前
April完成签到 ,获得积分10
53秒前
chenying完成签到 ,获得积分0
58秒前
song完成签到 ,获得积分10
1分钟前
scenery0510完成签到,获得积分10
1分钟前
研友_nVWP2Z完成签到 ,获得积分10
1分钟前
李崋壹完成签到 ,获得积分10
1分钟前
WANG完成签到,获得积分10
1分钟前
小巧问芙完成签到 ,获得积分10
1分钟前
sowhat完成签到 ,获得积分10
1分钟前
mojito完成签到 ,获得积分10
1分钟前
忆茶戏完成签到 ,获得积分10
2分钟前
Dave完成签到 ,获得积分10
2分钟前
饱满一手完成签到 ,获得积分10
2分钟前
onevip完成签到,获得积分10
2分钟前
qianci2009完成签到,获得积分10
2分钟前
guo完成签到 ,获得积分10
2分钟前
Yolenders完成签到 ,获得积分10
2分钟前
伊yan完成签到 ,获得积分10
2分钟前
bubble嘞完成签到 ,获得积分10
2分钟前
ESC惠子子子子子完成签到 ,获得积分10
2分钟前
饱满绮波完成签到 ,获得积分10
2分钟前
奋斗的妙海完成签到 ,获得积分0
2分钟前
思苇完成签到 ,获得积分10
3分钟前
LiShin完成签到 ,获得积分10
3分钟前
夏秋完成签到 ,获得积分10
3分钟前
万能图书馆应助yanice采纳,获得30
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294696
求助须知:如何正确求助?哪些是违规求助? 2930565
关于积分的说明 8446295
捐赠科研通 2602848
什么是DOI,文献DOI怎么找? 1420757
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643460