Extraction of binary black hole gravitational wave signals from detector data using deep learning

利戈 二元黑洞 波形 物理 引力波 噪音(视频) 探测器 卷积神经网络 二进制数 信号(编程语言) 高斯噪声 计算机科学 天体物理学 人工智能 光学 图像(数学) 电压 算术 量子力学 程序设计语言 数学
作者
C. Chatterjee,L. Wen,Foivos I. Diakogiannis,Kevin Vinsen
出处
期刊:Physical review [American Physical Society]
卷期号:104 (6) 被引量:7
标识
DOI:10.1103/physrevd.104.064046
摘要

Accurate extractions of the detected gravitational wave (GW) signal waveforms are essential to validate a detection and to probe the astrophysics behind the sources producing the GWs. This however could be difficult in realistic scenarios where the signals detected by existing GW detectors could be contaminated with non-stationary and non-Gaussian noise. While the performance of existing waveform extraction methods are optimal, they are not fast enough for online application, which is important for multi-messenger astronomy. In this paper, we demonstrate that a deep learning architecture consisting of Convolutional Neural Network and bidirectional Long Short-Term Memory components can be used to extract binary black hole (BBH) GW waveforms from realistic noise in a few milli-seconds. We have tested our network systematically on injected GW signals, with component masses uniformly distributed in the range of 10 to 80 solar masses, on Gaussian noise and LIGO detector noise. We find that our model can extract GW waveforms with overlaps of more than 0.95 with pure Numerical Relativity templates for signals with signal-to-noise ratio (SNR) greater than six, and is also robust against interfering glitches. We then apply our model to all ten detected BBH events from the first (O1) and second (O2) observation runs, obtaining greater than 0.97 overlaps for all ten extracted BBH waveforms with the corresponding pure templates. We discuss the implication of our result and its future applications to GW localization and mass estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzc4632完成签到,获得积分10
1秒前
黑咖啡完成签到,获得积分10
2秒前
3秒前
汉堡包应助WWW采纳,获得10
4秒前
4秒前
美好灵寒发布了新的文献求助10
4秒前
7秒前
8秒前
领导范儿应助嘻嘻采纳,获得10
9秒前
9秒前
轻松面包发布了新的文献求助10
11秒前
ark861023发布了新的文献求助10
11秒前
12秒前
12秒前
大方岩完成签到,获得积分10
13秒前
书亚发布了新的文献求助10
13秒前
13秒前
科研通AI5应助友好驳采纳,获得10
14秒前
小马甲应助朱先生采纳,获得10
16秒前
16秒前
gds完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
解语花发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
WWW发布了新的文献求助10
18秒前
18秒前
和谐的小懒虫完成签到,获得积分10
18秒前
搜集达人应助HXL采纳,获得10
19秒前
19秒前
19秒前
FashionBoy应助fu采纳,获得10
19秒前
20秒前
20秒前
严健翎发布了新的文献求助10
20秒前
不摸鱼上啥班完成签到,获得积分10
20秒前
何姗悦发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590079
求助须知:如何正确求助?哪些是违规求助? 4005062
关于积分的说明 12400100
捐赠科研通 3682035
什么是DOI,文献DOI怎么找? 2029370
邀请新用户注册赠送积分活动 1062987
科研通“疑难数据库(出版商)”最低求助积分说明 948589