Extraction of binary black hole gravitational wave signals from detector data using deep learning

利戈 二元黑洞 波形 物理 引力波 噪音(视频) 探测器 卷积神经网络 二进制数 信号(编程语言) 高斯噪声 计算机科学 天体物理学 人工智能 光学 图像(数学) 电压 算术 量子力学 程序设计语言 数学
作者
C. Chatterjee,L. Wen,Foivos I. Diakogiannis,Kevin Vinsen
出处
期刊:Physical review [American Physical Society]
卷期号:104 (6) 被引量:7
标识
DOI:10.1103/physrevd.104.064046
摘要

Accurate extractions of the detected gravitational wave (GW) signal waveforms are essential to validate a detection and to probe the astrophysics behind the sources producing the GWs. This however could be difficult in realistic scenarios where the signals detected by existing GW detectors could be contaminated with non-stationary and non-Gaussian noise. While the performance of existing waveform extraction methods are optimal, they are not fast enough for online application, which is important for multi-messenger astronomy. In this paper, we demonstrate that a deep learning architecture consisting of Convolutional Neural Network and bidirectional Long Short-Term Memory components can be used to extract binary black hole (BBH) GW waveforms from realistic noise in a few milli-seconds. We have tested our network systematically on injected GW signals, with component masses uniformly distributed in the range of 10 to 80 solar masses, on Gaussian noise and LIGO detector noise. We find that our model can extract GW waveforms with overlaps of more than 0.95 with pure Numerical Relativity templates for signals with signal-to-noise ratio (SNR) greater than six, and is also robust against interfering glitches. We then apply our model to all ten detected BBH events from the first (O1) and second (O2) observation runs, obtaining greater than 0.97 overlaps for all ten extracted BBH waveforms with the corresponding pure templates. We discuss the implication of our result and its future applications to GW localization and mass estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PDD发布了新的文献求助10
刚刚
1秒前
gtx完成签到 ,获得积分10
1秒前
1秒前
Hello应助qwerty采纳,获得10
1秒前
笑相完成签到,获得积分10
1秒前
2秒前
Coco完成签到 ,获得积分10
2秒前
2秒前
3秒前
mengdewen发布了新的文献求助30
3秒前
OU发布了新的文献求助10
3秒前
4秒前
科研通AI6应助伞下铭采纳,获得10
4秒前
科研通AI6应助伞下铭采纳,获得10
4秒前
CipherSage应助干净的友卉采纳,获得10
4秒前
dada完成签到 ,获得积分10
5秒前
5秒前
科研小卡拉米完成签到,获得积分10
6秒前
SciGPT应助CHINA_C13采纳,获得10
6秒前
orixero应助CHINA_C13采纳,获得10
6秒前
CodeCraft应助CHINA_C13采纳,获得150
6秒前
科研通AI6应助CHINA_C13采纳,获得150
6秒前
科研通AI6应助CHINA_C13采纳,获得10
6秒前
科研通AI6应助CHINA_C13采纳,获得150
6秒前
小羊先生完成签到 ,获得积分10
6秒前
云游归尘发布了新的文献求助10
7秒前
小童发布了新的文献求助10
7秒前
饱满以松完成签到 ,获得积分10
7秒前
7秒前
8秒前
平平发布了新的文献求助10
8秒前
凶狠的储发布了新的文献求助10
8秒前
冰菱完成签到,获得积分10
8秒前
Owen应助碎碎采纳,获得10
8秒前
warithy发布了新的文献求助10
9秒前
Ethanyoyo0917完成签到,获得积分10
9秒前
Ava应助优雅的老姆采纳,获得10
9秒前
liekkas发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002