Extraction of binary black hole gravitational wave signals from detector data using deep learning

利戈 二元黑洞 波形 物理 引力波 噪音(视频) 探测器 卷积神经网络 二进制数 信号(编程语言) 高斯噪声 计算机科学 天体物理学 人工智能 光学 图像(数学) 电压 算术 量子力学 程序设计语言 数学
作者
C. Chatterjee,L. Wen,Foivos I. Diakogiannis,Kevin Vinsen
出处
期刊:Physical review [American Physical Society]
卷期号:104 (6) 被引量:7
标识
DOI:10.1103/physrevd.104.064046
摘要

Accurate extractions of the detected gravitational wave (GW) signal waveforms are essential to validate a detection and to probe the astrophysics behind the sources producing the GWs. This however could be difficult in realistic scenarios where the signals detected by existing GW detectors could be contaminated with non-stationary and non-Gaussian noise. While the performance of existing waveform extraction methods are optimal, they are not fast enough for online application, which is important for multi-messenger astronomy. In this paper, we demonstrate that a deep learning architecture consisting of Convolutional Neural Network and bidirectional Long Short-Term Memory components can be used to extract binary black hole (BBH) GW waveforms from realistic noise in a few milli-seconds. We have tested our network systematically on injected GW signals, with component masses uniformly distributed in the range of 10 to 80 solar masses, on Gaussian noise and LIGO detector noise. We find that our model can extract GW waveforms with overlaps of more than 0.95 with pure Numerical Relativity templates for signals with signal-to-noise ratio (SNR) greater than six, and is also robust against interfering glitches. We then apply our model to all ten detected BBH events from the first (O1) and second (O2) observation runs, obtaining greater than 0.97 overlaps for all ten extracted BBH waveforms with the corresponding pure templates. We discuss the implication of our result and its future applications to GW localization and mass estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助Horizon采纳,获得10
1秒前
1秒前
1秒前
yangyijx发布了新的文献求助10
1秒前
英姑应助lxl采纳,获得10
2秒前
欢呼妙菱发布了新的文献求助30
2秒前
慕青应助yuni采纳,获得10
2秒前
2秒前
LR完成签到,获得积分20
3秒前
sci来来来发布了新的文献求助10
3秒前
满满发布了新的文献求助10
3秒前
jkl928发布了新的文献求助10
3秒前
上官若男应助安静一曲采纳,获得10
3秒前
3秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
海东来应助科研通管家采纳,获得30
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得30
5秒前
Ava应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
丁丽发布了新的文献求助10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
6秒前
CodeCraft应助是真的采纳,获得10
6秒前
SciGPT应助快乐梦松采纳,获得10
7秒前
pipi发布了新的文献求助10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130