农药
材料科学
光热治疗
纳米技术
杀虫剂
肥料
环境化学
农业
环境科学
化学
农学
有机化学
生物
生态学
作者
Yanzheng Ji,Song Ma,Shaoqing Lv,Yingjie Wang,Shaoyu Lü,Mingzhu Liu
标识
DOI:10.1021/acsami.1c11914
摘要
The development of modern agriculture has prompted the greater input of herbicides, insecticides, and fertilizers. However, precision release and targeted delivery of these agrochemicals still remain a challenge. Here, a pesticide-fertilizer all-in-one combination (PFAC) strategy and deep learning are employed to form a system for controlled and targeted delivery of agrochemicals. This system mainly consists of three components: (1) hollow mesoporous silica (HMS), to encapsulate herbicides and phase-change material; (2) polydopamine (PDA) coating, to provide a photothermal effect; and (3) a zeolitic imidazolate framework (ZIF8), to provide micronutrient Zn2+ and encapsulate insecticides. Results show that the PFAC at concentration of 5 mg mL–1 reaches the phase transition temperature of 1-tetradecanol (37.5 °C) after 5 min of near-infrared (NIR) irradiation (800 nm, 0.5 W cm–2). The data of corn and weed are collected and relayed to deep learning algorithms for model building to realize object detection and further targeted weeding. In-field treatment results indicated that the growth of chicory herb was significantly inhibited when treated with the PFAC compared with the blank group after 24 h under NIR irradiation for 2 h. This system combines agrochemical innovation and artificial intelligence technology, achieves synergistic effects of weeding and insecticide and nutrient supply, and will potentially achieve precision and sustainable agriculture.
科研通智能强力驱动
Strongly Powered by AbleSci AI