Synthetization of bicycle route data from aggregate GPS-based cycling data and its utility for bicycle route choice analysis

骨料(复合) 综合数据 全球定位系统 计算机科学 利用 数据收集 众包 运输工程 数据聚合器 过程(计算) 工程类 计算机安全 计算机网络 万维网 电信 医学 统计 操作系统 数学 病理 复合材料 材料科学 无线传感器网络
作者
Stefan Huber
标识
DOI:10.1109/mt-its49943.2021.9529316
摘要

Traffic planners in most cities need detailed bicycle route data to investigate cycling behavior. This disaggregate data, which provides information on revealed preference of cyclists choosing their routes through a city road network, is often used to analyze bicycle route choice. However, the required data is usually not available for most city areas. In recebt years, more and more commercial companies and nongovernmental initiatives provide aggregate GPS-based cycling data. Due to crowdsourcing, the data is relatively cheap to acquire and available for most cities around the globe (e.g. data from Strava). However, the data do not provide detailed information on single routes because companies usually process the data and provide aggregate data instead of single route data. Thus, the data do not meet the requirements for detailed analysis. Few studies investigated how to exploit the aggregate data or even how to derive single routes. Disaggregating the available aggregate data to synthetic single routes could help to generate detailed cycling route data on low costs. However, there is currently no knowledge about feasibility of route disaggregation and the validity of resulting routes. Therefore, the article presents results of the evaluation of a developed route synthetization approach. To evaluate the approach, a large bicycle GPS data sample is aggregated first. This ensures that the used aggregate data possess the same data structure as the data provided e.g. by commercial providers. In a second step, detailed routes are synthesized using a state-of-research multistep route synthetization approach. The comparison of synthesized routes with the original ones reveals an impressive match (up to 97%). However, accuracy strongly depends on zonal size of the aggregate input data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大锅盖关注了科研通微信公众号
刚刚
wzc发布了新的文献求助10
刚刚
白222发布了新的文献求助10
刚刚
爆米花应助迷人的山柳采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
清脆天空发布了新的文献求助10
2秒前
可爱的函函应助候帅采纳,获得10
3秒前
sarah完成签到,获得积分10
3秒前
生椰拿铁关注了科研通微信公众号
3秒前
3秒前
领导范儿应助乔里采纳,获得10
3秒前
lily发布了新的文献求助10
4秒前
4秒前
木木三完成签到,获得积分10
4秒前
知来者发布了新的文献求助10
5秒前
5秒前
所所应助然也采纳,获得10
6秒前
碧蓝以彤完成签到,获得积分20
6秒前
烤乳猪发布了新的文献求助10
7秒前
kexin完成签到,获得积分10
7秒前
瘦瘦亦绿完成签到,获得积分10
7秒前
称心曼安发布了新的文献求助20
7秒前
tp完成签到,获得积分20
8秒前
小Q完成签到,获得积分10
8秒前
10秒前
10秒前
yyl发布了新的文献求助30
10秒前
10秒前
脑洞疼应助blooming boy采纳,获得10
11秒前
11秒前
希望天下0贩的0应助淡淡采纳,获得30
12秒前
浮游应助伶俐代亦采纳,获得10
12秒前
13秒前
13秒前
苹果忆文完成签到 ,获得积分10
13秒前
13秒前
Even发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
JamesPei应助lily采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943392
求助须知:如何正确求助?哪些是违规求助? 4208561
关于积分的说明 13083290
捐赠科研通 3988024
什么是DOI,文献DOI怎么找? 2183416
邀请新用户注册赠送积分活动 1198965
关于科研通互助平台的介绍 1111557