Synthetization of bicycle route data from aggregate GPS-based cycling data and its utility for bicycle route choice analysis

骨料(复合) 综合数据 全球定位系统 计算机科学 利用 数据收集 众包 运输工程 数据聚合器 过程(计算) 工程类 计算机安全 计算机网络 万维网 电信 医学 统计 操作系统 数学 病理 复合材料 材料科学 无线传感器网络
作者
Stefan Huber
标识
DOI:10.1109/mt-its49943.2021.9529316
摘要

Traffic planners in most cities need detailed bicycle route data to investigate cycling behavior. This disaggregate data, which provides information on revealed preference of cyclists choosing their routes through a city road network, is often used to analyze bicycle route choice. However, the required data is usually not available for most city areas. In recebt years, more and more commercial companies and nongovernmental initiatives provide aggregate GPS-based cycling data. Due to crowdsourcing, the data is relatively cheap to acquire and available for most cities around the globe (e.g. data from Strava). However, the data do not provide detailed information on single routes because companies usually process the data and provide aggregate data instead of single route data. Thus, the data do not meet the requirements for detailed analysis. Few studies investigated how to exploit the aggregate data or even how to derive single routes. Disaggregating the available aggregate data to synthetic single routes could help to generate detailed cycling route data on low costs. However, there is currently no knowledge about feasibility of route disaggregation and the validity of resulting routes. Therefore, the article presents results of the evaluation of a developed route synthetization approach. To evaluate the approach, a large bicycle GPS data sample is aggregated first. This ensures that the used aggregate data possess the same data structure as the data provided e.g. by commercial providers. In a second step, detailed routes are synthesized using a state-of-research multistep route synthetization approach. The comparison of synthesized routes with the original ones reveals an impressive match (up to 97%). However, accuracy strongly depends on zonal size of the aggregate input data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好的千愁完成签到,获得积分20
1秒前
宁静致远完成签到,获得积分10
1秒前
斯文败类应助科研通管家采纳,获得10
4秒前
天真的万声完成签到,获得积分10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
joker完成签到,获得积分10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
kingwill应助科研通管家采纳,获得20
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
kingwill应助科研通管家采纳,获得20
5秒前
DijiaXu应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
han应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
han应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
QDU应助派先生采纳,获得20
6秒前
安静幻桃完成签到,获得积分10
7秒前
大个应助儒雅的蓝天采纳,获得10
7秒前
贾云熙发布了新的文献求助10
9秒前
糖醋排骨完成签到,获得积分20
9秒前
Yaoz发布了新的文献求助10
9秒前
冰柠檬发布了新的文献求助10
10秒前
10秒前
鸣笛应助揣一袋星星糖采纳,获得10
10秒前
甜甜的盼海完成签到,获得积分10
13秒前
Freekor关注了科研通微信公众号
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020