EVA: Evaluation of Metabolic Feature Fidelity Using a Deep Learning Model Trained With Over 25000 Extracted Ion Chromatograms

人工智能 卷积神经网络 模式识别(心理学) 假阳性悖论 软件 计算机科学 特征(语言学) 过程(计算) 代谢组学 忠诚 人工神经网络 深度学习 化学计量学 机器学习 化学 色谱法 电信 操作系统 哲学 语言学 程序设计语言
作者
Jian Guo,Sam Shen,Shipei Xing,Ying Chen,Frank Chen,Elizabeth Porter,Huaxu Yu,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (36): 12181-12186 被引量:27
标识
DOI:10.1021/acs.analchem.1c01309
摘要

Extracting metabolic features from liquid chromatography–mass spectrometry (LC-MS) data relies on the recognition of extracted ion chromatogram (EIC) peak shapes using peak picking algorithms. Unfortunately, all peak picking algorithms present a significant drawback of generating a problematic number of false positives. In this work, we take advantage of deep learning technology to develop a convolutional neural network (CNN)-based program that can automatically recognize metabolic features with poor EIC shapes, which are of low feature fidelity and more likely to be false. Our CNN model was trained using 25095 EIC plots collected from 22 LC-MS-based metabolomics projects of various sample types, LC and MS conditions. Notably, we manually inspected all the EIC plots to assign good or poor EIC quality for accurate model training. The trained CNN model is embedded into a C#-based program, named EVA (short for evaluation). The EVA Windows Application is a versatile platform that can process metabolic features generated by LC-MS systems of various vendors and processed using various data processing software. Our comprehensive evaluation of EVA indicates that it achieves over 90% classification accuracy. EVA can be readily used in LC-MS-based metabolomics projects and is freely available on the Microsoft Store by searching "EVA Metabolomics".
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
6秒前
研友_VZG7GZ应助贺呵呵采纳,获得10
6秒前
华仔应助小居居采纳,获得10
6秒前
April_nd发布了新的文献求助10
8秒前
MingqingFang完成签到,获得积分10
8秒前
9秒前
小莫发布了新的文献求助10
9秒前
复方蛋酥卷完成签到,获得积分10
9秒前
所所应助moonlight采纳,获得10
10秒前
10秒前
宁静致远完成签到,获得积分10
10秒前
12秒前
于思枫完成签到,获得积分10
13秒前
希望天下0贩的0应助kyJYbs采纳,获得10
14秒前
14秒前
一颗苹果发布了新的文献求助10
15秒前
15秒前
打打应助皮崇知采纳,获得10
15秒前
阿巴发布了新的文献求助10
16秒前
18秒前
1751587229发布了新的文献求助10
18秒前
Kyone完成签到,获得积分10
18秒前
18秒前
解语花应助机电虎采纳,获得30
19秒前
19秒前
19秒前
20秒前
22秒前
mawenyu发布了新的文献求助10
22秒前
23秒前
moonlight发布了新的文献求助10
23秒前
贺呵呵发布了新的文献求助10
23秒前
zx发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
26秒前
尊敬惜儿完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824