EVA: Evaluation of Metabolic Feature Fidelity Using a Deep Learning Model Trained With Over 25000 Extracted Ion Chromatograms

人工智能 卷积神经网络 模式识别(心理学) 假阳性悖论 软件 计算机科学 特征(语言学) 过程(计算) 代谢组学 忠诚 人工神经网络 深度学习 化学计量学 机器学习 化学 色谱法 电信 操作系统 哲学 语言学 程序设计语言
作者
Jian Guo,Sam Shen,Shipei Xing,Ying Chen,Frank Chen,Elizabeth Porter,Huaxu Yu,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (36): 12181-12186 被引量:27
标识
DOI:10.1021/acs.analchem.1c01309
摘要

Extracting metabolic features from liquid chromatography–mass spectrometry (LC-MS) data relies on the recognition of extracted ion chromatogram (EIC) peak shapes using peak picking algorithms. Unfortunately, all peak picking algorithms present a significant drawback of generating a problematic number of false positives. In this work, we take advantage of deep learning technology to develop a convolutional neural network (CNN)-based program that can automatically recognize metabolic features with poor EIC shapes, which are of low feature fidelity and more likely to be false. Our CNN model was trained using 25095 EIC plots collected from 22 LC-MS-based metabolomics projects of various sample types, LC and MS conditions. Notably, we manually inspected all the EIC plots to assign good or poor EIC quality for accurate model training. The trained CNN model is embedded into a C#-based program, named EVA (short for evaluation). The EVA Windows Application is a versatile platform that can process metabolic features generated by LC-MS systems of various vendors and processed using various data processing software. Our comprehensive evaluation of EVA indicates that it achieves over 90% classification accuracy. EVA can be readily used in LC-MS-based metabolomics projects and is freely available on the Microsoft Store by searching "EVA Metabolomics".
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁路网125完成签到,获得积分10
1秒前
高贵碧凡关注了科研通微信公众号
1秒前
3秒前
大个应助淡淡无春采纳,获得10
4秒前
邵一一完成签到 ,获得积分10
4秒前
莫伊完成签到,获得积分10
4秒前
转身在街角完成签到,获得积分10
7秒前
独特的帽子完成签到,获得积分10
8秒前
9秒前
威武果汁发布了新的文献求助10
9秒前
小二郎应助拾忆采纳,获得30
10秒前
hizy完成签到,获得积分10
11秒前
mingyue应助丹丹采纳,获得10
11秒前
13秒前
FashionBoy应助小邢一定行采纳,获得10
14秒前
小章鱼发布了新的文献求助30
14秒前
14秒前
14秒前
15秒前
科研通AI2S应助hizy采纳,获得30
15秒前
鸡蛋花干夹馍完成签到,获得积分20
16秒前
李大伟完成签到,获得积分10
16秒前
18秒前
李海妍发布了新的文献求助10
19秒前
21秒前
Singularity应助莫羽倾尘采纳,获得20
27秒前
sunishope发布了新的文献求助10
28秒前
29秒前
30秒前
30秒前
风一样完成签到,获得积分10
31秒前
李爱国应助阿鸢采纳,获得10
32秒前
上官若男应助俏皮诺言采纳,获得10
34秒前
周梦蝶发布了新的文献求助10
35秒前
syk应助myg123采纳,获得10
35秒前
2x1完成签到,获得积分10
36秒前
852应助lzb2228采纳,获得10
37秒前
天道酬勤发布了新的文献求助10
37秒前
38秒前
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626