Deductive Reinforcement Learning for Visual Autonomous Urban Driving Navigation

强化学习 计算机科学 语义推理机 水准点(测量) 过程(计算) 弹道 人工智能 损害赔偿 人机交互 编码器 操作系统 物理 政治学 大地测量学 法学 地理 天文
作者
Changxin Huang,Ronghui Zhang,Meizi Ouyang,Pengxu Wei,Junfan Lin,Jiang Su,Liang Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (12): 5379-5391 被引量:14
标识
DOI:10.1109/tnnls.2021.3109284
摘要

Existing deep reinforcement learning (RL) are devoted to research applications on video games, e.g., The Open Racing Car Simulator (TORCS) and Atari games. However, it remains under-explored for vision-based autonomous urban driving navigation (VB-AUDN). VB-AUDN requires a sophisticated agent working safely in structured, changing, and unpredictable environments; otherwise, inappropriate operations may lead to irreversible or catastrophic damages. In this work, we propose a deductive RL (DeRL) to address this challenge. A deduction reasoner (DR) is introduced to endow the agent with ability to foresee the future and to promote policy learning. Specifically, DR first predicts future transitions through a parameterized environment model. Then, DR conducts self-assessment at the predicted trajectory to perceive the consequences of current policy resulting in a more reliable decision-making process. Additionally, a semantic encoder module (SEM) is designed to extract compact driving representation from the raw images, which is robust to the changes of the environment. Extensive experimental results demonstrate that DeRL outperforms the state-of-the-art model-free RL approaches on the public CAR Learning to Act (CARLA) benchmark and presents a superior performance on success rate and driving safety for goal-directed navigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助WEAWEA采纳,获得10
2秒前
2秒前
3秒前
科研通AI2S应助如意的冰双采纳,获得10
4秒前
能干的问晴完成签到,获得积分10
5秒前
miemie66发布了新的文献求助10
5秒前
香芋完成签到 ,获得积分10
5秒前
nihao发布了新的文献求助10
5秒前
5秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
韩野发布了新的文献求助10
10秒前
山海完成签到,获得积分10
10秒前
penpen发布了新的文献求助10
10秒前
11秒前
张芃尧完成签到,获得积分20
12秒前
天天快乐应助CHEN采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
SciGPT应助hearz采纳,获得10
14秒前
14秒前
孙元应助zzz采纳,获得10
15秒前
15秒前
元谷雪发布了新的文献求助10
16秒前
英姑应助Vizz采纳,获得10
16秒前
起个名真难完成签到,获得积分10
16秒前
幻影完成签到 ,获得积分10
16秒前
ayintree完成签到,获得积分10
17秒前
17秒前
小蘑菇应助mm采纳,获得10
17秒前
Nan发布了新的文献求助200
17秒前
19秒前
打工人发布了新的文献求助10
19秒前
张芃尧发布了新的文献求助10
20秒前
Franco发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233