Recent advancements in strategies to improve performance of tungsten-based semiconductors for photocatalytic hydrogen production: a review

光催化 制氢 半导体 材料科学 纳米技术 生产(经济) 工程物理 光电子学 化学 冶金 工程类 催化作用 经济 宏观经济学 有机化学 生物化学
作者
Rubiat Sadia Mim,E.M. Sharaf Aldeen,Abdullah Alhebshi,Muhammad Tahir
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:54 (50): 503001-503001 被引量:17
标识
DOI:10.1088/1361-6463/ac21fc
摘要

Multiple efforts have been made to find and utilize sustainable renewable energy to replace fossil fuels that have polluted the environment. Among many semiconductors, tungsten trioxide (WO3) is a promising semiconductor due to its narrow band gap (between 2.5 and 3 eV) and has stable chemical and physical properties. WO3 can absorb a broad range of the solar light spectrum but it is unable to produce hydrogen from water due to its lower conduction band position. However, the high oxidation power of the valence band; nontoxicity and resiliency towards harsh environments such as continuous contact to water and solar irradiation makes it a very promising photocatalyst. The current review article is a literature review on the basis of keywords including hydrogen production; tungsten-based semiconductors; heterojunction formation; band gap engineering, thermodynamics and visible light active photocatalysts. This review aims to summarize the current progress in WO3 based materials for photocatalytic H2 production along with the recent strategies employed for modifications of WO3 based materials for efficient photoactivity. Conventionally, the fundamentals along with the thermodynamics for photocatalytic hydrogen production based on heterogeneous photocatalysts have been discovered. The structural modifications of WO3 with band gap engineering for efficiency enhancement are systematically presented. Recent approaches such as coupling of semiconductors, band gap engineering, establishment of heterojunctions, Z-scheme and step-scheme development to improve the surface sensitization of a semiconductor have been thoroughly discussed. Co-doping semiconductors have proven to reduce the band gap notably and their outstanding electronic band position for visible light photocatalysis has been identified. Modification, doping or coupling of WO3 with a cocatalyst is necessary to change the band gap position. This review article summarizes progress of modifications of WO3 and discusses the future research direction for designing the most efficient WO3 composite towards hydrogen production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助huanhuan采纳,获得10
1秒前
1秒前
微不足道完成签到,获得积分10
2秒前
CipherSage应助852采纳,获得10
4秒前
zhaoshao发布了新的文献求助10
5秒前
领导范儿应助燕燕于飞采纳,获得10
5秒前
李爱国应助燕燕于飞采纳,获得10
5秒前
燕熙发布了新的文献求助10
5秒前
小马完成签到,获得积分10
6秒前
水星摸鱼完成签到,获得积分10
6秒前
赘婿应助汎影采纳,获得10
6秒前
zzzwln发布了新的文献求助10
7秒前
8秒前
8秒前
曲珍完成签到,获得积分10
9秒前
研友_VZG7GZ应助憨憨猫采纳,获得10
9秒前
10秒前
jason应助RiderDaniel采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
12秒前
demom完成签到,获得积分10
12秒前
bkagyin应助irisjlj采纳,获得10
13秒前
13秒前
14秒前
14秒前
jessica完成签到,获得积分10
14秒前
坡坡大王应助ly采纳,获得10
15秒前
LIU发布了新的文献求助10
15秒前
Sam发布了新的文献求助10
15秒前
huanhuan发布了新的文献求助10
15秒前
深情安青应助汎影采纳,获得10
16秒前
雨雨子发布了新的文献求助30
16秒前
zzzwln完成签到,获得积分10
17秒前
jvmao发布了新的文献求助10
18秒前
小二郎应助菠萝萝萝王子采纳,获得10
19秒前
19秒前
852发布了新的文献求助10
19秒前
NexusExplorer应助乐观的蓝血采纳,获得10
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470052
求助须知:如何正确求助?哪些是违规求助? 3063269
关于积分的说明 9082164
捐赠科研通 2753583
什么是DOI,文献DOI怎么找? 1510900
邀请新用户注册赠送积分活动 698158
科研通“疑难数据库(出版商)”最低求助积分说明 698064