Targeting PRAME with TCR-Mimic CAR T Cells in AML

抗原 嵌合抗原受体 T细胞受体 背景(考古学) 生物 癌症研究 造血 抗体 免疫学 T细胞 免疫系统 干细胞 细胞生物学 古生物学
作者
Anisha M. Loeb,Sommer Castro,Cynthia Nourigat-Mckay,LaKeisha Perkins,Laura Pardo,Amanda R. Leonti,Thao T. Tang,Lindsey Call,Tiffany A. Hylkema,David A. Scheinberg,Soheil Meshinchi,Quy Le
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 733-733 被引量:3
标识
DOI:10.1182/blood-2021-148677
摘要

Abstract Chimeric antigen receptor (CAR) Ts have been effective in pre-B ALL, but their efficacy in AML has yet to be established. A significant barrier to effective CAR T therapy for AML is the substantial overlap of cell surface antigens expressed on AML and normal hematopoietic cells. To overcome this barrier, we profiled the transcriptome of over 3000 AML cases in children and young adults and contrasted this to normal hematopoietic tissues in search for AML-restricted targets (high expression in AML, silence in normal hematopoiesis). This led to the discovery of over 200 AML-restricted genes. Of these, Preferentially Expressed Antigen in Melanoma (PRAME) is among one of the highest expressing AML-restricted genes (Figure 1A) and, given its previous track record as a target for a variety of cancers, we selected this target for further assessment and therapeutic development in AML. However, PRAME is intracellular and therefore is inaccessible for targeting with conventional CAR T. Recently, a novel approach to target intracellular antigens was developed using TCR mimic (mTCR) antibodies, which recognize peptide/human leukocyte antigen (HLA) complexes on the tumor cell surface in a similar mode of recognition as authentic T Cell Receptors (TCRs). The Pr20 antibody was developed to recognize the PRAME ALY peptide in the context of HLA-A*02. Utilizing this Pr20 antibody, we developed a mTCR CAR T targeting PRAME and evaluated its preclinical efficacy in AML. The VL and VH sequences from Pr20 were used to construct the single-chain fragment variable domain of the 41-BB/CD3ζ CAR vector. We evaluated PRAME mTCR CAR T cells against OCI-AML-2 and THP-1 AML cell lines (PRAME +/HLA-A*02 +), K562 CML cell line (PRAME +/HLA-A*02 -) and HEK293T (293T) (PRAME -/HLA-A*02 +). Using a PE-conjugated Pr20 antibody, we confirmed that OCI-AML2 and THP-1 express PRAME ALY: HLA-A*02 but not K562 and 293T by flow cytometry (Figure 1B). As further confirmation, AML blasts in primary patient samples also stained with the Pr20 antibody (Figure 1C). For in-vivo studies, leukemia-bearing mice were treated with unmodified T or PRAME mTCR CAR T cells at 5x10 6 cells (1:1 CD4:CD8) per mouse 1 week following leukemia injection. Leukemia burden was measured weekly by bioluminescence IVIS imaging. Cells were treated with 10ng/mL of IFN-γ prior to co-incubation with T cells for 16 hours. PRAME mTCR CAR T cells demonstrated potent cytolytic activity against OCI-AML2 and THP1 but not against K562 or 293T cells, following co-incubation with target cells for 24 hours (Figure 1D). Consistent with potent, target-specific reactivity against PRAME ALY: HLA-A*02 positive cells, increased levels of IFN-γ, IL-2 and TNF-α were detected in cocultures of CAR T cells with OCI-AML2 and THP1 but not with K562 and 293T cells (Figure 1D). The cytolytic activity of PRAME mTCR CAR T cells extended to primary AML specimens expressing the PRAME ALY: HLA-A*02 antigen (data not shown). In-vivo efficacy of PRAME mTCR CAR T was demonstrated in OCI-AML2 and THP-1 CDX models (Figure 1E). Treatment with CAR T cells induced leukemia clearance and significantly reduced leukemia burden in OCI-AML2 and THP-1 xenograft mice, respectively, while treatment with unmodified T cells exhibited leukemia progression (Figure 1E). The anti-leukemia activity of CAR T cells resulted in enhanced survival in OCI-AML2 (p=0.0035) and THP-1 (p=0.0047) xenografts (Figure 1F). The in-vivo activity of PRAME mTCR CAR T cells was target specific, as treatment with CAR T cells did not affect leukemia burden and survival in K562 xenograft mice (Figure 1F). Given that IFN-γ promotes PRAME presentation, we investigated whether treatment of IFN-γ would enhance cytolytic activity of PRAME mTCR CAR T cells. OCI-AML2 and THP-1 cells pretreated with IFN-γ were more sensitive to cytolysis compared to untreated controls (Figure 1G). In this study, we demonstrate the therapeutic potential of targeting PRAME with mTCR CAR T cells in AML. We show potent, target-specific reactivity of PRAME mTCR CAR T cells against PRAME ALY: HLA-A*02 positive AML cells, both in-vitro and in-vivo. We further demonstrate that the activity of PRAME mTCR CAR T cells can be enhanced with IFN-γ treatment, providing a useful strategy to increase efficacy. Thus, the results presented provide a novel approach to target PRAME with CAR T cells and compelling data to evaluate PRAME mTCR CAR T cells in AML clinical trials. Figure 1 Figure 1. Disclosures Pardo: Hematologics, Inc.: Current Employment. Hylkema: Quest Diagnostics Inc: Current equity holder in publicly-traded company; Moderna: Current equity holder in publicly-traded company. Scheinberg: Eureka Therapeutics: Current equity holder in publicly-traded company.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东山完成签到,获得积分10
1秒前
AY完成签到 ,获得积分10
1秒前
de完成签到,获得积分10
1秒前
zyfzyf完成签到,获得积分10
1秒前
求助人员发布了新的文献求助80
1秒前
Amazing完成签到 ,获得积分10
2秒前
香蕉以菱完成签到,获得积分10
2秒前
兔兔酱发布了新的文献求助10
4秒前
再美完成签到,获得积分10
4秒前
stride21完成签到,获得积分10
4秒前
4秒前
de发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
华仔应助天行马采纳,获得10
6秒前
太叔文博完成签到,获得积分10
6秒前
小明完成签到,获得积分10
6秒前
清秀凡霜完成签到,获得积分10
7秒前
怡然的乘风完成签到,获得积分10
7秒前
春祭发布了新的文献求助10
8秒前
JamesPei应助Hmbb采纳,获得10
8秒前
云汐儿完成签到,获得积分10
8秒前
8秒前
天上白玉京完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
可靠幼旋完成签到,获得积分10
8秒前
RowanLuo完成签到,获得积分10
9秒前
9秒前
清脆圆子完成签到 ,获得积分10
9秒前
Stella应助鸿汉采纳,获得10
9秒前
DJY完成签到,获得积分10
9秒前
nczpf2010完成签到,获得积分10
9秒前
王钟萱完成签到,获得积分10
9秒前
心之所向完成签到 ,获得积分10
10秒前
li完成签到,获得积分10
10秒前
mm发布了新的文献求助10
11秒前
六六完成签到,获得积分20
11秒前
阿拉完成签到 ,获得积分10
11秒前
兔兔酱完成签到,获得积分10
11秒前
神经网络模型完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584934
求助须知:如何正确求助?哪些是违规求助? 4668775
关于积分的说明 14772496
捐赠科研通 4616501
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467626